Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were...Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.展开更多
To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability...To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.展开更多
[Objective] Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calcu...[Objective] Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calculation process in national cotton registration procedure, and thus to enhance the practical application of cultivar regis- tration index in cotton breeding ancl cotton recommending. [Method] By means of correlation analysis, partial correlation analysis and path analysis methods, the cor- relation of cotton main properties and their effects on cultivar registration index were explored using the dataset of national cotton regional trials in Yangtze River Valley during 1996-2013. The cultivar registration index model was constructed with step- wise regression statistical technique to ascertain the quantitative relationship of main characters with cultivar registration index, and the regional cotton trial dataset in 2013 was used to validate the model. [Result] Several characters with larger deter- minants to cultivar registration index were screened out,ie. lint yield increase ratio, pro-frost yield ratio, verticillium wilt index, fiber strength, fusarium wilt index and mi- cronaire value. The cultivar registration index model defined the functional relation- ship of cultivar registration index with the selected main characters, among which lint yield increase ratio, fiber strength and micronaire value contributed most to culti- var registration index. The model validation with regional cotton trials in 2013 indi- cated the root mean square error, RMSE was only 2.77, and the variation coeffi- cient was 6.77%, which confirmed the model prediction effect was quite perfect. [Conclusion] The developed cultivar registration index model was reliable enough to simulate the complicated scoring system in cultivar registration procedure, also sim- plified cotton registration process, and enhanced the practicability of the cultivar reg- istration index.展开更多
The Zuibaiji River is located in the west of Fukuoka city, which has a rich natural resources and history but various problems as well. In order to solve some of these problems, stakeholders need to observe and talk a...The Zuibaiji River is located in the west of Fukuoka city, which has a rich natural resources and history but various problems as well. In order to solve some of these problems, stakeholders need to observe and talk about the river. Also recently, the "MIZBERING Project" has been opening up possibilities for renewing riverside uses of lost activities from the old days in Japan. This project is being conducted by citizens, companies and government administrations with an interest in waterside areas. The First MIZBER1NG Zuibaiji River Conference was held to discuss the issues of the Zuibaiji Basin. Its purpose was to visit and search out the nature and history of the entire Zuibaiji Basin from its mountains to the sea and to rediscover the Zuibaiji Basin, and finally to discuss future plans for the Zuibaiji Basin and Imazu Tidal Flat at its outlet. After visiting the Zuibaiji Basin, we discovered a problem that the Zubaiji Dam is holding not only water but also sand, and this problem affects the environment of the Zuibaiji Basin, such as its ecosystem and topography. Finally, we provided a venue for the local people to discuss problems and future plans for the Zuibaiji Basin.展开更多
Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian river...Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian rivers fall into three regions, including Eurasia Arctic, East Asia, Southeast and South Asia Regions. The Eurasia Arctic Region is characterized by the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the South-East and South Asia Region yields higher sediment concentration and highest sediment load.The sediment loads of these regions are mainly controlled by climate, geomorphology and tectonic activity. The Eurasia Arctic rivers with large basin areas and water discharge, drain low relief which consists of tundra sediment, thus causing the lowest sediment load. The East Asia rivers with small basin areas and lowest water discharges, drain extensive loess plateau, and transport most erodible loess material, which results in highest sediment concentration. The SE and South Asia rivers originating from the Tibet Plateau have large basin areas and the largest water discharges because of the Summer Monsoon and high rainfall influence, causing the highest sediment load.In Asia, tectonic motion of the Tibet Plateau plays an important role. Those large rivers originating from the Tibet Plateau transport about 50% of the world river sediment load to ocean annually, forming large estuaries and deltas, and consequently exerting a great influence on sedimentation in the coastal zone and shelves.展开更多
In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, incl...In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.展开更多
Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on represent...Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on represents an important advance that overcomes many of the limitations of the conventional techniques commonly applied in such investigations. A study on soil redistribution (including soil erosion and deposition) was carried out in the Dian Lake catchment, Yunnan Province, using ^137Cs and selected chemical properties. The average soil erosion rate was 1,280.2 t km^2 yr^-1. Soil erosion rate occurring on different parts of the slope was significantly different on different parts of the slope, increasing.from the top. the bottom to the middle slope. The average soil erosion rate is also different with the land use type and that of the cultivated land (1, 672. 8 t km^-2 yr^-1) is higher than oJ the uncultivated land (1.161.2t km^-2 yr^-1 ). The result shows that landform, slope gradient and land use type are key factors that influence the size of soil erosion. In addition, we also find the SOC and TN contents and amount of the soil erosion to be correlated in the soil. With the soil erosion occurring, there are land degradation and the local eco-environmental problems, such as water eutrophication in Dian Lake.展开更多
For reasons of simplicity, the most commonly used hydrological models are based on the Soil Conservation Service Curve Number (SCS-CN) model, which is probably a good choice for the estimation of runoff on the Loess...For reasons of simplicity, the most commonly used hydrological models are based on the Soil Conservation Service Curve Number (SCS-CN) model, which is probably a good choice for the estimation of runoff on the Loess Plateau of China; however, the high spatial heterogeneity, mainly caused by a fragmented landform and variations in soil type, may limit its applicability to this region. Therefore, applicability of the SCS-CN model to a small watershed, Liudaogou on the plateau, was evaluated and the most appropriate initial abstraction ratio (I~/S) value in the model was quantified by the inverse method. The results showed that the standard SCS-CN model was applicable to the estimation of runoff in the Liudaogou watershed and the model performance was acceptable according to the values of relative error and Nash-Sutcliffe efficiency. The most appropriate Ia/S value for the watershed was 0.22 because with this modified Ia/S value, the model performance was slightly improved. The model performance was not sensitive to the modification of the Ia/S value when one heavy rainfall event (50.1 mm) was not considered, which implied that the model, using a standard Ia/S value, can be recommended for the Liudaogou watershed because single rainfall events exceeding 50 mm seldom occurred in that region. The runoff amount predicted for the Liudaogou watershed by the SCS-CN model, using the modified Ia/S value, increased gradually with increasing rainfall when rainfall values were lower than 50 mm, whereas the predicted amount increased rapidly when the rainfall exceeded 50 mm. These findings may be helpful in solving the problem of serious soil and water loss on the Loess Plateau of China.展开更多
Soil degradation is a serious environmental problem in Ethiopia. However, little information is documented on indicators such as variations in soil properties across different landforms in a catchment. This study was ...Soil degradation is a serious environmental problem in Ethiopia. However, little information is documented on indicators such as variations in soil properties across different landforms in a catchment. This study was aimed to assess soil properties and their changes across sites with different erosion statuses, and identify landscape positions that require prior management attention in the Mai-Negus catchment, northern Ethiopia. Three types of erosion-status sites(stable, eroding and aggrading) were identified using reconnaissance surveys, and then the corresponding soil samples were collected and analyzed. The major soil properties were significantly varied(P ≤ 0.05) among the three erosion-status sites. The highest soil p H, organic carbon, total nitrogen, cation exchange capacity, iron and zinc were recorded from the aggrading sites in the reservoir and valley landforms of the study catchment. A higher bulk density was generally recorded in the eroding sites, whereas a lower value was observed in the aggrading sites. The highest sand content was observed in the eroding sites of the mountain followed by the central ridge landform. The paired mean difference and the correlation matrix of most soil properties between the different erosion statuses also showed significant differences. About 95% of the erosionstatus sites were correctly classified by the discriminant function, indicating that the field survey-based classification was acceptable for decision making. On the basis of this study, suitable interventions should thus be introduced to the prioritized landforms, which are the mountain and central ridge, and eroding sites with severely degraded soil properties across the catchment.展开更多
基金by the Natural Science Foundation of China (Grant No. 40801101)
文摘Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.
基金Under the auspices of National Natural Science Foundation of China(No.51279140,51249010)National Basic Research Program of China(No.2010CB428406)
文摘To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.
基金Supported by National Major Projects for the GMO Cultivation of New Varieties in China(2012ZX08013015)
文摘[Objective] Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calculation process in national cotton registration procedure, and thus to enhance the practical application of cultivar regis- tration index in cotton breeding ancl cotton recommending. [Method] By means of correlation analysis, partial correlation analysis and path analysis methods, the cor- relation of cotton main properties and their effects on cultivar registration index were explored using the dataset of national cotton regional trials in Yangtze River Valley during 1996-2013. The cultivar registration index model was constructed with step- wise regression statistical technique to ascertain the quantitative relationship of main characters with cultivar registration index, and the regional cotton trial dataset in 2013 was used to validate the model. [Result] Several characters with larger deter- minants to cultivar registration index were screened out,ie. lint yield increase ratio, pro-frost yield ratio, verticillium wilt index, fiber strength, fusarium wilt index and mi- cronaire value. The cultivar registration index model defined the functional relation- ship of cultivar registration index with the selected main characters, among which lint yield increase ratio, fiber strength and micronaire value contributed most to culti- var registration index. The model validation with regional cotton trials in 2013 indi- cated the root mean square error, RMSE was only 2.77, and the variation coeffi- cient was 6.77%, which confirmed the model prediction effect was quite perfect. [Conclusion] The developed cultivar registration index model was reliable enough to simulate the complicated scoring system in cultivar registration procedure, also sim- plified cotton registration process, and enhanced the practicability of the cultivar reg- istration index.
文摘The Zuibaiji River is located in the west of Fukuoka city, which has a rich natural resources and history but various problems as well. In order to solve some of these problems, stakeholders need to observe and talk about the river. Also recently, the "MIZBERING Project" has been opening up possibilities for renewing riverside uses of lost activities from the old days in Japan. This project is being conducted by citizens, companies and government administrations with an interest in waterside areas. The First MIZBER1NG Zuibaiji River Conference was held to discuss the issues of the Zuibaiji Basin. Its purpose was to visit and search out the nature and history of the entire Zuibaiji Basin from its mountains to the sea and to rediscover the Zuibaiji Basin, and finally to discuss future plans for the Zuibaiji Basin and Imazu Tidal Flat at its outlet. After visiting the Zuibaiji Basin, we discovered a problem that the Zubaiji Dam is holding not only water but also sand, and this problem affects the environment of the Zuibaiji Basin, such as its ecosystem and topography. Finally, we provided a venue for the local people to discuss problems and future plans for the Zuibaiji Basin.
基金The Project is sponsored by the Chinese National Nature Science Foundation (49676288) Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education of China and the Russian Foundation for Fundamental Research (Pr
文摘Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian rivers fall into three regions, including Eurasia Arctic, East Asia, Southeast and South Asia Regions. The Eurasia Arctic Region is characterized by the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the South-East and South Asia Region yields higher sediment concentration and highest sediment load.The sediment loads of these regions are mainly controlled by climate, geomorphology and tectonic activity. The Eurasia Arctic rivers with large basin areas and water discharge, drain low relief which consists of tundra sediment, thus causing the lowest sediment load. The East Asia rivers with small basin areas and lowest water discharges, drain extensive loess plateau, and transport most erodible loess material, which results in highest sediment concentration. The SE and South Asia rivers originating from the Tibet Plateau have large basin areas and the largest water discharges because of the Summer Monsoon and high rainfall influence, causing the highest sediment load.In Asia, tectonic motion of the Tibet Plateau plays an important role. Those large rivers originating from the Tibet Plateau transport about 50% of the world river sediment load to ocean annually, forming large estuaries and deltas, and consequently exerting a great influence on sedimentation in the coastal zone and shelves.
文摘In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.
基金sponsored by the fund on soil ero-sion and silt source of Dian Lake catchment (Grant No. 40473052).
文摘Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on represents an important advance that overcomes many of the limitations of the conventional techniques commonly applied in such investigations. A study on soil redistribution (including soil erosion and deposition) was carried out in the Dian Lake catchment, Yunnan Province, using ^137Cs and selected chemical properties. The average soil erosion rate was 1,280.2 t km^2 yr^-1. Soil erosion rate occurring on different parts of the slope was significantly different on different parts of the slope, increasing.from the top. the bottom to the middle slope. The average soil erosion rate is also different with the land use type and that of the cultivated land (1, 672. 8 t km^-2 yr^-1) is higher than oJ the uncultivated land (1.161.2t km^-2 yr^-1 ). The result shows that landform, slope gradient and land use type are key factors that influence the size of soil erosion. In addition, we also find the SOC and TN contents and amount of the soil erosion to be correlated in the soil. With the soil erosion occurring, there are land degradation and the local eco-environmental problems, such as water eutrophication in Dian Lake.
基金Supported by the National Natural Science Foundation of China (No.41001156)the Beijing Novel Program, China (No.2009B25)+1 种基金the Beijing Municipal Natural Science Foundation, China (No.8102015)the Open Fund of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of China (No.10501-295)
文摘For reasons of simplicity, the most commonly used hydrological models are based on the Soil Conservation Service Curve Number (SCS-CN) model, which is probably a good choice for the estimation of runoff on the Loess Plateau of China; however, the high spatial heterogeneity, mainly caused by a fragmented landform and variations in soil type, may limit its applicability to this region. Therefore, applicability of the SCS-CN model to a small watershed, Liudaogou on the plateau, was evaluated and the most appropriate initial abstraction ratio (I~/S) value in the model was quantified by the inverse method. The results showed that the standard SCS-CN model was applicable to the estimation of runoff in the Liudaogou watershed and the model performance was acceptable according to the values of relative error and Nash-Sutcliffe efficiency. The most appropriate Ia/S value for the watershed was 0.22 because with this modified Ia/S value, the model performance was slightly improved. The model performance was not sensitive to the modification of the Ia/S value when one heavy rainfall event (50.1 mm) was not considered, which implied that the model, using a standard Ia/S value, can be recommended for the Liudaogou watershed because single rainfall events exceeding 50 mm seldom occurred in that region. The runoff amount predicted for the Liudaogou watershed by the SCS-CN model, using the modified Ia/S value, increased gradually with increasing rainfall when rainfall values were lower than 50 mm, whereas the predicted amount increased rapidly when the rainfall exceeded 50 mm. These findings may be helpful in solving the problem of serious soil and water loss on the Loess Plateau of China.
基金the financial support by Deutscher Akademischer Austausch Dienst (DAAD)/Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (Germany) through the Centre for Development Research (ZEF), University of Bonn (Germany)the support of Aksum University (Ethiopia) for the first author’s field work
文摘Soil degradation is a serious environmental problem in Ethiopia. However, little information is documented on indicators such as variations in soil properties across different landforms in a catchment. This study was aimed to assess soil properties and their changes across sites with different erosion statuses, and identify landscape positions that require prior management attention in the Mai-Negus catchment, northern Ethiopia. Three types of erosion-status sites(stable, eroding and aggrading) were identified using reconnaissance surveys, and then the corresponding soil samples were collected and analyzed. The major soil properties were significantly varied(P ≤ 0.05) among the three erosion-status sites. The highest soil p H, organic carbon, total nitrogen, cation exchange capacity, iron and zinc were recorded from the aggrading sites in the reservoir and valley landforms of the study catchment. A higher bulk density was generally recorded in the eroding sites, whereas a lower value was observed in the aggrading sites. The highest sand content was observed in the eroding sites of the mountain followed by the central ridge landform. The paired mean difference and the correlation matrix of most soil properties between the different erosion statuses also showed significant differences. About 95% of the erosionstatus sites were correctly classified by the discriminant function, indicating that the field survey-based classification was acceptable for decision making. On the basis of this study, suitable interventions should thus be introduced to the prioritized landforms, which are the mountain and central ridge, and eroding sites with severely degraded soil properties across the catchment.