In this study, a historic simulation covering the period from 1951 to 2000 and three projected scenario simulations covering 2001-2050 were conducted em- ploying the regional climate model RegCM4 to detect the changes...In this study, a historic simulation covering the period from 1951 to 2000 and three projected scenario simulations covering 2001-2050 were conducted em- ploying the regional climate model RegCM4 to detect the changes of terrestrial water storage (TWS) in major river basins of China, using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): A1B, A2, and B1. The historic simula- tion revealed that the variations of TWS, which are dominated by precipitation in the basins, rely highly on their climatic features. Compared with the historic simu- lation, the changes of TWS in the scenario simulations showed strong regional differences. However, for all sce- narios, TWS was found to increase most in Northeast China and surrounding mountains around the Tibetan Plateau, and decrease most in eastern regions of China. Unlike the low seasonal variations of TWS in arid areas, the TWS showed strong seasonal variations in eastern monsoon areas, with the maximum changes usually oc- curring in summer, when TWS increases most in a year. Among the three scenario simulations, TWS increased most in Songhua River Basin of B1 scenario, and de- creased most in Pearl River Basin of A2 scenario and Hal River Basin of A1B scenario, accompanied by different annual trends and seasonal variations.展开更多
基金supported by the National Basic Research Program of China(Grants 2010CB428403 and 2009CB421407)the National Natural Science Foundation of China(Grants 41075062 and 91125016)
文摘In this study, a historic simulation covering the period from 1951 to 2000 and three projected scenario simulations covering 2001-2050 were conducted em- ploying the regional climate model RegCM4 to detect the changes of terrestrial water storage (TWS) in major river basins of China, using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): A1B, A2, and B1. The historic simula- tion revealed that the variations of TWS, which are dominated by precipitation in the basins, rely highly on their climatic features. Compared with the historic simu- lation, the changes of TWS in the scenario simulations showed strong regional differences. However, for all sce- narios, TWS was found to increase most in Northeast China and surrounding mountains around the Tibetan Plateau, and decrease most in eastern regions of China. Unlike the low seasonal variations of TWS in arid areas, the TWS showed strong seasonal variations in eastern monsoon areas, with the maximum changes usually oc- curring in summer, when TWS increases most in a year. Among the three scenario simulations, TWS increased most in Songhua River Basin of B1 scenario, and de- creased most in Pearl River Basin of A2 scenario and Hal River Basin of A1B scenario, accompanied by different annual trends and seasonal variations.