Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This p...Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.展开更多
文摘Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.