This study analyzes the vegetative and soil degradation,measured as biomass and soil loss,for Arnigad micro-watershed located in Indian Himalayan state of Uttarakhand,in systems framework by using dynamic linear progr...This study analyzes the vegetative and soil degradation,measured as biomass and soil loss,for Arnigad micro-watershed located in Indian Himalayan state of Uttarakhand,in systems framework by using dynamic linear programming bio-economic model.The focus is at investigating the effects of alternate policy regimes,i.e.,introduction of improved energy sources for cooking along with substitution of existing local livestock breeds with improved breed,reduction in human population growth and introduction of high yielding varieties of main crops including paddy,maize and wheat.The model horizon extended over a period of 25 years,i.e.,from 2006 to 2030.It was found that the model scenario incorporating increased use of improved energy sources along with substitution of local cows by improved cows could be the most effective policy option in reducing vegetative and soil degradation.The vegetative biomass density declined to 19.76% compared to 35.24% in the BASE scenario and soil erosion loss was also lowered by 29.13%.Also,the reduction of population growth rate to half of the BASE scenario led to minor improvements in degradation.Introduction of high yielding varieties of main crops slightly increased vegetative degradation but reduced soil loss(8.35%) with respect to the BASE scenario.Such a phenomenon could be explained in terms of changed crop mix resulting in reduced amount of crop by-products requiring increased lopping of tree branches for animal fodder.The policy option of the increased use of improved energy sources along with substitution of improved breed of cows resulted in 9.58% higher income.Introduction of high yielding varieties of crops led to 1.92% increase in income,but the income decreased by 1.25 % when population growth was reduced to half.The usefulness of the model lies in analyzing the systems behavior in its entirety where the results can predict the possible direction of change as a result of manipulation in alternate economic regimes.展开更多
In developing countries, land productivity involves little market, where the agricultural land use is mainly determined by the food demands as well as the land suitability. The land use pattern will not ensure everywh...In developing countries, land productivity involves little market, where the agricultural land use is mainly determined by the food demands as well as the land suitability. The land use pattern will not ensure everywhere enough land for certain cropping if spatial allocation just according to land use suitability. To solve this problem, a subzone and a pre-allocation for each land use are added in spatial allocation module, and land use suitability and area optimi- zation module are incorporated to constitute a whole agricultural land use optimal allocation (ALUOA) system. The system is developed on the platform .Net 2005 using ArcGIS Engine (version 9.2) and C# language, and is tested and validated in Yili watershed of Xinjiang Region on the newly reclaimed area. In the case study, with the help of soil data obtained from 69 points sampled in the fieldwork in 2008, main river data supplied by the Department of Water Resources of Xinjiang Uygur Autonomous Region in China, and temperature data provided by Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, land use suitability on eight common crops are evaluated one by one using linear weighted summation method in the land use suitability model. The linear pro- gramming (LP) model in area optimization model succeeds to give out land area target of each crop under three scenarios. At last, the land use targets are allotted in space both with a six subzone file and without a subzone file. The resuits show that the land use maps with a subzone not only ensure every part has enough land for every crop, but also gives a more fragmental land use pattern, with about 87.99% and 135.92% more patches than the one without, while at the expense of loss between 15.30% and 19.53% in the overall suitability at the same time.展开更多
Water is a critical natural resource upon which all social and economic activities and ecosystem functions depend. With a surprising social and economic development in the past decades, water has become an important c...Water is a critical natural resource upon which all social and economic activities and ecosystem functions depend. With a surprising social and economic development in the past decades, water has become an important constraint for China's sustainable development, and a matter concerning economic security, ecological security and national security of the country. Understanding the changes of water resources is greatly helpful in analyzing the impacts of climatic change, formulating plans for utilization and protection of water resources, and making water resource decisions. Based on China's national water resources assessment, the Mann-Kendall's test, and Morlet wavelet, we analyzed the changing trends and periods of China's renewable water resources during 1956–2010. The results as following:(1) There is no significant change trend of water resources on the countrywide scale during the period 1956–2010, the total water resources show a slight increasing trend, and the national annual average water resources during the period 1991–2010 increased by 1% relative to that of the period 1961–1990.(2) The changes of water resources in different level-I water resource regions vary significantly. Annual average water resources of the Haihe River and Yellow River regions in the northern China decreased 19% and 17% respectively in the past 20 years. Water resource increased in Southern and Northwestern rivers regions, particularly in the Northwest rivers region, with the increasing amplitude by nearly 10% in the past 20 years.(3) The inter-annual variation of national water resource became larger in the past 20 years, as compared with that of the period 1961–1990. The coefficients of water resource variation increased in Northwestern and Southwestern rivers regions, while the inter-annual variation tended to decrease in the Haihe and the Yellow River regions where significant decline of water resources happened.(4) A 14-year quasi-periodicity of the national water resource variation was detected, overlapping with various periodicities of water resources of different level-I water resource regions. Remarkable uniformity exists between the first or secondary primary periodicity of water resource variation in adjacent level-I water resource regions.展开更多
基金a part of research project:An Interdisciplinary Approach to Analyze the Dynamics of Forest and Soil Degradation and to Develop Sustainable Agro-ecological Strategies for Fragile Himalayan Watersheds,funded by the European Union
文摘This study analyzes the vegetative and soil degradation,measured as biomass and soil loss,for Arnigad micro-watershed located in Indian Himalayan state of Uttarakhand,in systems framework by using dynamic linear programming bio-economic model.The focus is at investigating the effects of alternate policy regimes,i.e.,introduction of improved energy sources for cooking along with substitution of existing local livestock breeds with improved breed,reduction in human population growth and introduction of high yielding varieties of main crops including paddy,maize and wheat.The model horizon extended over a period of 25 years,i.e.,from 2006 to 2030.It was found that the model scenario incorporating increased use of improved energy sources along with substitution of local cows by improved cows could be the most effective policy option in reducing vegetative and soil degradation.The vegetative biomass density declined to 19.76% compared to 35.24% in the BASE scenario and soil erosion loss was also lowered by 29.13%.Also,the reduction of population growth rate to half of the BASE scenario led to minor improvements in degradation.Introduction of high yielding varieties of main crops slightly increased vegetative degradation but reduced soil loss(8.35%) with respect to the BASE scenario.Such a phenomenon could be explained in terms of changed crop mix resulting in reduced amount of crop by-products requiring increased lopping of tree branches for animal fodder.The policy option of the increased use of improved energy sources along with substitution of improved breed of cows resulted in 9.58% higher income.Introduction of high yielding varieties of crops led to 1.92% increase in income,but the income decreased by 1.25 % when population growth was reduced to half.The usefulness of the model lies in analyzing the systems behavior in its entirety where the results can predict the possible direction of change as a result of manipulation in alternate economic regimes.
基金Under the auspices of National Natural Science Foundation of China (No. 41001108, 41071065)Beijing Municipal Natural Science Foundation (No. 9113029)
文摘In developing countries, land productivity involves little market, where the agricultural land use is mainly determined by the food demands as well as the land suitability. The land use pattern will not ensure everywhere enough land for certain cropping if spatial allocation just according to land use suitability. To solve this problem, a subzone and a pre-allocation for each land use are added in spatial allocation module, and land use suitability and area optimi- zation module are incorporated to constitute a whole agricultural land use optimal allocation (ALUOA) system. The system is developed on the platform .Net 2005 using ArcGIS Engine (version 9.2) and C# language, and is tested and validated in Yili watershed of Xinjiang Region on the newly reclaimed area. In the case study, with the help of soil data obtained from 69 points sampled in the fieldwork in 2008, main river data supplied by the Department of Water Resources of Xinjiang Uygur Autonomous Region in China, and temperature data provided by Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, land use suitability on eight common crops are evaluated one by one using linear weighted summation method in the land use suitability model. The linear pro- gramming (LP) model in area optimization model succeeds to give out land area target of each crop under three scenarios. At last, the land use targets are allotted in space both with a six subzone file and without a subzone file. The resuits show that the land use maps with a subzone not only ensure every part has enough land for every crop, but also gives a more fragmental land use pattern, with about 87.99% and 135.92% more patches than the one without, while at the expense of loss between 15.30% and 19.53% in the overall suitability at the same time.
基金funded by the National Basic Research Program of China (Grant No. 2010CB428406)the External Cooperation Program of the Chinese Academy of Sciences (Grant No. GJHZ1016)
文摘Water is a critical natural resource upon which all social and economic activities and ecosystem functions depend. With a surprising social and economic development in the past decades, water has become an important constraint for China's sustainable development, and a matter concerning economic security, ecological security and national security of the country. Understanding the changes of water resources is greatly helpful in analyzing the impacts of climatic change, formulating plans for utilization and protection of water resources, and making water resource decisions. Based on China's national water resources assessment, the Mann-Kendall's test, and Morlet wavelet, we analyzed the changing trends and periods of China's renewable water resources during 1956–2010. The results as following:(1) There is no significant change trend of water resources on the countrywide scale during the period 1956–2010, the total water resources show a slight increasing trend, and the national annual average water resources during the period 1991–2010 increased by 1% relative to that of the period 1961–1990.(2) The changes of water resources in different level-I water resource regions vary significantly. Annual average water resources of the Haihe River and Yellow River regions in the northern China decreased 19% and 17% respectively in the past 20 years. Water resource increased in Southern and Northwestern rivers regions, particularly in the Northwest rivers region, with the increasing amplitude by nearly 10% in the past 20 years.(3) The inter-annual variation of national water resource became larger in the past 20 years, as compared with that of the period 1961–1990. The coefficients of water resource variation increased in Northwestern and Southwestern rivers regions, while the inter-annual variation tended to decrease in the Haihe and the Yellow River regions where significant decline of water resources happened.(4) A 14-year quasi-periodicity of the national water resource variation was detected, overlapping with various periodicities of water resources of different level-I water resource regions. Remarkable uniformity exists between the first or secondary primary periodicity of water resource variation in adjacent level-I water resource regions.