In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in th...The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.展开更多
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedo...With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.展开更多
Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relat...Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.展开更多
Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical sol...Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.展开更多
The pinning characteristics of a single crystal NdBaaCu3Oy superconductor at low (40 K), intermediate (77.3 K) and high (88 K) temperatures were investigated. The experimental results of the critical current den...The pinning characteristics of a single crystal NdBaaCu3Oy superconductor at low (40 K), intermediate (77.3 K) and high (88 K) temperatures were investigated. The experimental results of the critical current density dc and the apparent pinning potential u o which estimated from magnetic relaxation measurements are compared with the theoretical analysis based on the flux creep-flow model, taking the distribution of the flux pinning strength into account. The number of flux lines in the flux bundle (g2), the most probable value of pinning strength (Am), distribution width of pinning strength (σ-2) and other pinning parameters such as m, γ,δ are determined so that a good fit is obtained between the experimental and theoretical results. The behavior of these parameters is discussed in correspondence to the pinning characteristics of low, intermediate and high temperatures. The observed results are approximately consistent with the theoretical predictions of Brandt et al. model of the order-disorder transition.展开更多
There is increasing public concern about biological interactions with and the potential health effects of low frequency electric and magnetic fields. Recently, the ICNIRP (International Commission on Non-Ionizing Rad...There is increasing public concern about biological interactions with and the potential health effects of low frequency electric and magnetic fields. Recently, the ICNIRP (International Commission on Non-Ionizing Radiation Protection) has published new exposure guidelines with regard to these fields. The aim of this paper is to demonstrate the calculation of the currents and electric fields induced in the human body by external electric fields at 60 Hz, using numerical human models of anatomically-realistic human bodies, and to compare those results with the basic restrictions proposed by the new guidelines. As a result, in the case that a human is exposed to an electric field of 1 kV/m at 60 Hz the short-circuit current of 18 μA flows though the ankles. Furthermore, the electric field of 40 mV/m in the nervous tissue of the adult model is induced by exposure to external electric fields at the reference level, which is enough smaller than the basic restrictions established in the ICNIRP guidelines for occupational exposure.展开更多
The treatment of advective fluxes in high-order finite volume models is well established, but this is not the case for diffusive fluxes, due to the conflict between the discontinuous representation of the solution and...The treatment of advective fluxes in high-order finite volume models is well established, but this is not the case for diffusive fluxes, due to the conflict between the discontinuous representation of the solution and the continuous structure of analytic solutions. In this paper, a derivative reconstruction approach is proposed in the context of spectral volume methods, for the approximation of diffusive fluxes, aiming at the reconciliation of this conflict. Two different reconstructions are used for advective and diffusive fluxes: the advective reconstruction makes use of the information contained in a spectral cell, and allows the formation of discontinuities at the spectral cells boundaries; the diffusive reconstruction makes use of the information contained in contiguous spectral cells, imposing the continuity of the reconstruction at the spectral cells boundaries. The method is demonstrated by a number of numerical experiments, including the solution of shallow-water equations, complemented with the advective-diffusive transport equation of a conservative substance, showing the promising abilities of the numerical scheme proposed.展开更多
The authors study the asymptotic behavior of the smooth solutions to the Cauchy problems for two macroscopic models (hydrodynamic and drift-diffusion models) for semiconductors and the related relaxation limit problem...The authors study the asymptotic behavior of the smooth solutions to the Cauchy problems for two macroscopic models (hydrodynamic and drift-diffusion models) for semiconductors and the related relaxation limit problem. First, it is proved that the solutions to these two systems converge to the unique stationary solution time asymptotically without the smallness assump- tion on doping profile. Then, very sharp estimates on the smooth solutions, independent of the relaxation time, are obtained and used to establish the zero relaxation limit.展开更多
Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the z...Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.展开更多
Predictions for freezing heat transfer in a slab with convective boundary conditions at the cold surfaceare obtained from heat balance integral approximations, which consider conduction as the only modeof heat transfe...Predictions for freezing heat transfer in a slab with convective boundary conditions at the cold surfaceare obtained from heat balance integral approximations, which consider conduction as the only modeof heat transfer in both the solid and liquid and consider durations of precooling and freezing in theheat transfer process. The thermal penetration dimensionless parameter or is presented to distinguishtwO cases of freezing, and analytical results for α≥ 1 are given in this paper. An experimental investigation on freezing of water is reported for comparison with the one-dimensional conduction model toshow that experimental modeling for freezing heat transfer with convective boundary conditions usingPeltter devices is feasible. The comparison also demonstrated that the freezing rate in this case wasdecreased by natural convection in the liquid just as freezing with boundary conditions of the first kindand phase change approximately proceeds linearly with time rather than with square root of time atthe initiation of freezing.展开更多
The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.
Tropospheric delay acts as a systematic error source in the Global Navigation Satellite Systems(GNSS) positioning. Empirical models UNB3, UNB3 m, UNB4 and EGNOS have been developed for use in Satellite-Based Augmentat...Tropospheric delay acts as a systematic error source in the Global Navigation Satellite Systems(GNSS) positioning. Empirical models UNB3, UNB3 m, UNB4 and EGNOS have been developed for use in Satellite-Based Augmentation Systems(SBAS). Model performance, however, is limited due to the low spatial resolution of the look-up tables for meteorological parameters. A new design has been established in this study for improving performance of the tropospheric delay model by more effectively eliminating the error produced by tropospheric delay. The spatiotemporal characteristics of the Zenith Tropospheric Delay(ZTD) were analyzed with findings that ZTD exhibits different annual variations at different locations and decreases exponentially with height increasing. Spherical harmonics are utilized based on the findings to fit the annual mean and amplitude of the ZTD on a global scale and the exponential function is utilized for height corrections, yielding the ZTrop model. On a global scale, the ZTrop features an average deviation of ?1.0 cm and Root Mean Square(RMS) of 4.7 cm compared with the International GNSS Service(IGS) ZTD products, an average deviation of 0.0 cm and RMS of 4.5 cm compared with the Global Geodetic Observing System(GGOS) ZTD data, and an average deviation of ?1.3 cm and RMS of 5.2 cm compared with the ZTD data from the Constellation Observing System of Meteorology, Ionosphere, and Climate(COSMIC). The RMS of the ZTrop model is 14.5% smaller than that of UNB3, 6.0% smaller than that of UNB3 m, 16% smaller than that of UNB4, 14.5% smaller than that of EGNOS and equivalent to the sophisticated GPT2+Saas model in comparison with the IGS ZTD products. The ZTrop, UNB3 m and GPT2+Saas models are finally evaluated in GPS-based Precise Point Positioning(PPP), as the models act to aid in obtaining PPP position error less than 1.5 cm in north and east components and relative large error(>5 cm) in up component with respect to the random walk approach.展开更多
Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UC...Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.展开更多
The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects,...The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects,quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of Ga As, Ga Sb and Ga N semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.展开更多
This paper studies the zero-electron-mass limit, the quasi-neutral limit and the zero-relaxation-time limit in one-dimensional hydrodynamic models of Euler-Poisson system for plasmas and semiconductors. For each limit...This paper studies the zero-electron-mass limit, the quasi-neutral limit and the zero-relaxation-time limit in one-dimensional hydrodynamic models of Euler-Poisson system for plasmas and semiconductors. For each limit in the steady-state models, the author proves the strong convergence of the sequence of solutions and gives the corresponding convergence rate. In the time-dependent models, the author shows some useful estimates for the quasi-neutral limit and the zero-electron-mass limit. This study completes the analysis made in [11,12,13,14,19].展开更多
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
文摘The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.
基金Supported by the State Key Development Program for Basic Research of China (2006CB202503)
文摘With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.
基金supported by the research fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(No. MCMS-I-0518K01&MCMSI-0519G02)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Funding (No. 51875277)
文摘Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.
基金Project(2011ZX05015)supported by Important National Science and Technology Specific Projects of the "Twelfth Five-years" Plan Period,China
文摘Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.
文摘The pinning characteristics of a single crystal NdBaaCu3Oy superconductor at low (40 K), intermediate (77.3 K) and high (88 K) temperatures were investigated. The experimental results of the critical current density dc and the apparent pinning potential u o which estimated from magnetic relaxation measurements are compared with the theoretical analysis based on the flux creep-flow model, taking the distribution of the flux pinning strength into account. The number of flux lines in the flux bundle (g2), the most probable value of pinning strength (Am), distribution width of pinning strength (σ-2) and other pinning parameters such as m, γ,δ are determined so that a good fit is obtained between the experimental and theoretical results. The behavior of these parameters is discussed in correspondence to the pinning characteristics of low, intermediate and high temperatures. The observed results are approximately consistent with the theoretical predictions of Brandt et al. model of the order-disorder transition.
文摘There is increasing public concern about biological interactions with and the potential health effects of low frequency electric and magnetic fields. Recently, the ICNIRP (International Commission on Non-Ionizing Radiation Protection) has published new exposure guidelines with regard to these fields. The aim of this paper is to demonstrate the calculation of the currents and electric fields induced in the human body by external electric fields at 60 Hz, using numerical human models of anatomically-realistic human bodies, and to compare those results with the basic restrictions proposed by the new guidelines. As a result, in the case that a human is exposed to an electric field of 1 kV/m at 60 Hz the short-circuit current of 18 μA flows though the ankles. Furthermore, the electric field of 40 mV/m in the nervous tissue of the adult model is induced by exposure to external electric fields at the reference level, which is enough smaller than the basic restrictions established in the ICNIRP guidelines for occupational exposure.
文摘The treatment of advective fluxes in high-order finite volume models is well established, but this is not the case for diffusive fluxes, due to the conflict between the discontinuous representation of the solution and the continuous structure of analytic solutions. In this paper, a derivative reconstruction approach is proposed in the context of spectral volume methods, for the approximation of diffusive fluxes, aiming at the reconciliation of this conflict. Two different reconstructions are used for advective and diffusive fluxes: the advective reconstruction makes use of the information contained in a spectral cell, and allows the formation of discontinuities at the spectral cells boundaries; the diffusive reconstruction makes use of the information contained in contiguous spectral cells, imposing the continuity of the reconstruction at the spectral cells boundaries. The method is demonstrated by a number of numerical experiments, including the solution of shallow-water equations, complemented with the advective-diffusive transport equation of a conservative substance, showing the promising abilities of the numerical scheme proposed.
基金Project supported by the National Natural Science Foundation of China, the Grant of MST of China,the National Natural Science
文摘The authors study the asymptotic behavior of the smooth solutions to the Cauchy problems for two macroscopic models (hydrodynamic and drift-diffusion models) for semiconductors and the related relaxation limit problem. First, it is proved that the solutions to these two systems converge to the unique stationary solution time asymptotically without the smallness assump- tion on doping profile. Then, very sharp estimates on the smooth solutions, independent of the relaxation time, are obtained and used to establish the zero relaxation limit.
基金supported by the ANR (No. ANR-06-BLAN0306-01)the National Science Foundation (No.NSF-DMS-0906440) and the Research Fund of Indiana University
文摘Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.
文摘Predictions for freezing heat transfer in a slab with convective boundary conditions at the cold surfaceare obtained from heat balance integral approximations, which consider conduction as the only modeof heat transfer in both the solid and liquid and consider durations of precooling and freezing in theheat transfer process. The thermal penetration dimensionless parameter or is presented to distinguishtwO cases of freezing, and analytical results for α≥ 1 are given in this paper. An experimental investigation on freezing of water is reported for comparison with the one-dimensional conduction model toshow that experimental modeling for freezing heat transfer with convective boundary conditions usingPeltter devices is feasible. The comparison also demonstrated that the freezing rate in this case wasdecreased by natural convection in the liquid just as freezing with boundary conditions of the first kindand phase change approximately proceeds linearly with time rather than with square root of time atthe initiation of freezing.
基金supported by ISFMA,Fudan University,China and CNRS,France
文摘The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.
基金the National Natural Science Foundation of China (Grant Nos. 41174012 & 41274022)the National High Technology Research and Development Program of China (Grant No. 2013AA122502)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2014214020202)the Surveying and Mapping Basic Research Program of National Administration of Surveying, Mapping and Geoinformation (Grant No. 13-02-09)
文摘Tropospheric delay acts as a systematic error source in the Global Navigation Satellite Systems(GNSS) positioning. Empirical models UNB3, UNB3 m, UNB4 and EGNOS have been developed for use in Satellite-Based Augmentation Systems(SBAS). Model performance, however, is limited due to the low spatial resolution of the look-up tables for meteorological parameters. A new design has been established in this study for improving performance of the tropospheric delay model by more effectively eliminating the error produced by tropospheric delay. The spatiotemporal characteristics of the Zenith Tropospheric Delay(ZTD) were analyzed with findings that ZTD exhibits different annual variations at different locations and decreases exponentially with height increasing. Spherical harmonics are utilized based on the findings to fit the annual mean and amplitude of the ZTD on a global scale and the exponential function is utilized for height corrections, yielding the ZTrop model. On a global scale, the ZTrop features an average deviation of ?1.0 cm and Root Mean Square(RMS) of 4.7 cm compared with the International GNSS Service(IGS) ZTD products, an average deviation of 0.0 cm and RMS of 4.5 cm compared with the Global Geodetic Observing System(GGOS) ZTD data, and an average deviation of ?1.3 cm and RMS of 5.2 cm compared with the ZTD data from the Constellation Observing System of Meteorology, Ionosphere, and Climate(COSMIC). The RMS of the ZTrop model is 14.5% smaller than that of UNB3, 6.0% smaller than that of UNB3 m, 16% smaller than that of UNB4, 14.5% smaller than that of EGNOS and equivalent to the sophisticated GPT2+Saas model in comparison with the IGS ZTD products. The ZTrop, UNB3 m and GPT2+Saas models are finally evaluated in GPS-based Precise Point Positioning(PPP), as the models act to aid in obtaining PPP position error less than 1.5 cm in north and east components and relative large error(>5 cm) in up component with respect to the random walk approach.
基金supported by the Basic Research Funds for the Central Universities (Grant No. 2652015116)the National Natural Science Foundation of China (Grant Nos. 51209187, 41530316 & 91125024)+1 种基金the National Key Research and Development Program of China (Grant No. 2016YFC0402805)the Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653)
文摘Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.
文摘The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects,quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of Ga As, Ga Sb and Ga N semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.
文摘This paper studies the zero-electron-mass limit, the quasi-neutral limit and the zero-relaxation-time limit in one-dimensional hydrodynamic models of Euler-Poisson system for plasmas and semiconductors. For each limit in the steady-state models, the author proves the strong convergence of the sequence of solutions and gives the corresponding convergence rate. In the time-dependent models, the author shows some useful estimates for the quasi-neutral limit and the zero-electron-mass limit. This study completes the analysis made in [11,12,13,14,19].