Purplish soils having high fertility with mineral nutrients inherited from the parent rock are widely distributed in the hills along the Yangtze River,especially in the Sichuan Basin.Pot and field weathering experimen...Purplish soils having high fertility with mineral nutrients inherited from the parent rock are widely distributed in the hills along the Yangtze River,especially in the Sichuan Basin.Pot and field weathering experiments were conducted to mimic rock weathering and nutrient release processes in order to better understand soil fertility and nutrient compensation. Three types of purplish rock formations formed in the Jurassic period,Shaximiao(J_2s),Suining(J_3s),and Penglaizhen (J_3p),as well as one type formed in the Cretaceous period,the Chengqiangyan group(K_1c),were used in this study. Results showed that the soil formation rate was in the range from 11.2 to 19.6 mm every year,and rock weathering was in the order of J_3s>J_3p>J_2s>K_1c.Because more rock surface was exposed to sunlight and rainfall in field conditions,pot weathering was slower than field weathering.Nutrient release rates increased with rock weathering and was in the order similar to that of rock weathering:J_3p>J_3s>J_2s>K_1c.Potassium release was the most important in all rocks;after 2 years of weathering,19.4% to 46.9% of K was released from the initial parent rocks,which suggested that K release from weathering could meet most of the crop K requirement in purplish soils.Thus,rapid release of nutrients from weathering of purplish rocks was key to nutrient replenishment and fertility of purplish soils.展开更多
Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on see...Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on seepage characteristics was analyzed. The results show that: (1) Under the same axial stress (12 MPa), the permeability of different lithologic samples increases in the order: gangue 〈 mudstone 〈 sandstone 〈 limestone. The permeability of gangue is 3 magnitudes lower than that of limestone. The absolute value of the non-Darcy coefficient β increases in the order: limestone 〈 sandstone 〈 mudstone 〈 gangue. The non-Darcy coefficient β of limestone, which is positive, is 5 magnitudes lower than that of gangue. (2) With increasing axial stress, the permeability of saturated broken sandstone decreases, and the absolute value of the non-Darcy coefficient β increases. After the axial stress exceeds 12 MPa, the curves of permeability and non-Darcy coefficient β all tend to be stable. (3) With increasing Talbol power exponent, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. (4) With increasing loading, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. When the loading rate is 0.5 kN/s, the non-Darcy coefficient β is positive.展开更多
Monitoring and study of dynamic characteristics of groundwater are significant methods of earthquake monitoring and forecasting. For research on groundwater dynamics,groundwater dating can qualitatively and quantitati...Monitoring and study of dynamic characteristics of groundwater are significant methods of earthquake monitoring and forecasting. For research on groundwater dynamics,groundwater dating can qualitatively and quantitatively provide scientific analysis on the characteristics of groundwater recharge and runoff as well as renewal capacity. This article illustrates the methods used globally and summarizes the main advances and achievements in groundwater dating. It also focuses on the relationships between groundwater renewal capacity and seismic monitoring,groundwater movement and seismic activity,shallow groundwater recharge and abnormal interference elimination. The studies show that groundwater dating plays an important role in water-rock interaction,and geological tectonic and seismic activity evaluation. Therefore,groundwater dating can be widely used to monitor and analyze the precursor information in seismic underground fluid observations in the near future.展开更多
Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrolo...Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and enclosure homogenization temperatures to study the precipitation mechanism, pore fluid evolu- tion, and distribution of different types of carbonate cement in reservoir sand in the study area. Crystalline calcite has relatively heavy carbon and oxygen isotope ratios (δ13C = 2.14%o, 8180 = -5.77‰), and was precipitated early. It was precipitated di- rectly from supersaturated alkaline fluid under normal temperature and pressure conditions. At the time of precipitation, the fluid oxygen isotope ratio was very light, mainly showing the characteristics of a mixed meteoric water-seawater fluid( δ180 = -3‰), which shows that the fluid during precipitation was influenced by both meteoric water and seawater. The calcite cement that fills in the secondary pores has relatively lighter carbon and oxygen isotope ratios (δ13C = -2.36%0, 8180 = -15.68‰). This cement was precipitated late, mainly during the Middle and Late Jurassic. An important material source for this carbonate cement was the feldspar corrosion process that involved organic matter. The Ca2+, Fe3+ and Mg2+ ions released by the clay mineral transformation process were also important source materials. Because of water-rock interactions during the buri- al process, the oxygen isotope ratio of the fluid significantly increased during precipitation, by about 3‰. The dolomite ce- ments in calcarenaceous sandstone that was precipitated during the Middle Jurassic have heavier carbon and oxygen isotope ratios, which are similar to those of carbonate debris in the sandstone (δ13C = 1.93%o, δ180 = -6.11‰), demonstrating that the two are from the same source that had a heavier oxygen isotope ratio (δ180 of about 2.2‰). The differences in fluid oxygen isotope ratios during cement precipitation reflect the influences of different water-rock interaction systems or different wa- ter-rock interaction strengths. This is the main reason why the sandstone containing many rigid particles (lithic quartz sand- stone) has a relatively negative carbon isotope ratio and why the precipitation fluid in calcarenaceous sandstone has a relatively heavier oxygen isotope ratio.展开更多
基金the National Basic Research Program of China(No.2003CB415202)the National Natural Science Foundation of China(Nos.40571093 and 49601009)
文摘Purplish soils having high fertility with mineral nutrients inherited from the parent rock are widely distributed in the hills along the Yangtze River,especially in the Sichuan Basin.Pot and field weathering experiments were conducted to mimic rock weathering and nutrient release processes in order to better understand soil fertility and nutrient compensation. Three types of purplish rock formations formed in the Jurassic period,Shaximiao(J_2s),Suining(J_3s),and Penglaizhen (J_3p),as well as one type formed in the Cretaceous period,the Chengqiangyan group(K_1c),were used in this study. Results showed that the soil formation rate was in the range from 11.2 to 19.6 mm every year,and rock weathering was in the order of J_3s>J_3p>J_2s>K_1c.Because more rock surface was exposed to sunlight and rainfall in field conditions,pot weathering was slower than field weathering.Nutrient release rates increased with rock weathering and was in the order similar to that of rock weathering:J_3p>J_3s>J_2s>K_1c.Potassium release was the most important in all rocks;after 2 years of weathering,19.4% to 46.9% of K was released from the initial parent rocks,which suggested that K release from weathering could meet most of the crop K requirement in purplish soils.Thus,rapid release of nutrients from weathering of purplish rocks was key to nutrient replenishment and fertility of purplish soils.
基金provided by the National Basic Research Program of China (No.2013CB227900)the Ordinary University Graduate Student Research Innovation Project in Jiangsu Province for 2014 (No.KYLX_1370)the National Natural Science Foundation of China (Nos.11502229 and 51404266)
文摘Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on seepage characteristics was analyzed. The results show that: (1) Under the same axial stress (12 MPa), the permeability of different lithologic samples increases in the order: gangue 〈 mudstone 〈 sandstone 〈 limestone. The permeability of gangue is 3 magnitudes lower than that of limestone. The absolute value of the non-Darcy coefficient β increases in the order: limestone 〈 sandstone 〈 mudstone 〈 gangue. The non-Darcy coefficient β of limestone, which is positive, is 5 magnitudes lower than that of gangue. (2) With increasing axial stress, the permeability of saturated broken sandstone decreases, and the absolute value of the non-Darcy coefficient β increases. After the axial stress exceeds 12 MPa, the curves of permeability and non-Darcy coefficient β all tend to be stable. (3) With increasing Talbol power exponent, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. (4) With increasing loading, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. When the loading rate is 0.5 kN/s, the non-Darcy coefficient β is positive.
基金sponsored by the Special Foundation for Earthquake Scientific Research,CEA(201308006)
文摘Monitoring and study of dynamic characteristics of groundwater are significant methods of earthquake monitoring and forecasting. For research on groundwater dynamics,groundwater dating can qualitatively and quantitatively provide scientific analysis on the characteristics of groundwater recharge and runoff as well as renewal capacity. This article illustrates the methods used globally and summarizes the main advances and achievements in groundwater dating. It also focuses on the relationships between groundwater renewal capacity and seismic monitoring,groundwater movement and seismic activity,shallow groundwater recharge and abnormal interference elimination. The studies show that groundwater dating plays an important role in water-rock interaction,and geological tectonic and seismic activity evaluation. Therefore,groundwater dating can be widely used to monitor and analyze the precursor information in seismic underground fluid observations in the near future.
基金supported by the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Foundation (Grant No. PLC201101)the National Natural Science Foundation of China (Grant Nos. 41172119 and 41272130)
文摘Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and enclosure homogenization temperatures to study the precipitation mechanism, pore fluid evolu- tion, and distribution of different types of carbonate cement in reservoir sand in the study area. Crystalline calcite has relatively heavy carbon and oxygen isotope ratios (δ13C = 2.14%o, 8180 = -5.77‰), and was precipitated early. It was precipitated di- rectly from supersaturated alkaline fluid under normal temperature and pressure conditions. At the time of precipitation, the fluid oxygen isotope ratio was very light, mainly showing the characteristics of a mixed meteoric water-seawater fluid( δ180 = -3‰), which shows that the fluid during precipitation was influenced by both meteoric water and seawater. The calcite cement that fills in the secondary pores has relatively lighter carbon and oxygen isotope ratios (δ13C = -2.36%0, 8180 = -15.68‰). This cement was precipitated late, mainly during the Middle and Late Jurassic. An important material source for this carbonate cement was the feldspar corrosion process that involved organic matter. The Ca2+, Fe3+ and Mg2+ ions released by the clay mineral transformation process were also important source materials. Because of water-rock interactions during the buri- al process, the oxygen isotope ratio of the fluid significantly increased during precipitation, by about 3‰. The dolomite ce- ments in calcarenaceous sandstone that was precipitated during the Middle Jurassic have heavier carbon and oxygen isotope ratios, which are similar to those of carbonate debris in the sandstone (δ13C = 1.93%o, δ180 = -6.11‰), demonstrating that the two are from the same source that had a heavier oxygen isotope ratio (δ180 of about 2.2‰). The differences in fluid oxygen isotope ratios during cement precipitation reflect the influences of different water-rock interaction systems or different wa- ter-rock interaction strengths. This is the main reason why the sandstone containing many rigid particles (lithic quartz sand- stone) has a relatively negative carbon isotope ratio and why the precipitation fluid in calcarenaceous sandstone has a relatively heavier oxygen isotope ratio.