为了验证用户对项目评分时所处的上下文环境是否会对用户的偏好产生影响,基于矩阵过程的马尔科夫分解方法,提出了一种基于上下文的流式推荐算法(streaming recommendation algorithm based on context,C-SRA),该方法可以从嘈杂的上下文...为了验证用户对项目评分时所处的上下文环境是否会对用户的偏好产生影响,基于矩阵过程的马尔科夫分解方法,提出了一种基于上下文的流式推荐算法(streaming recommendation algorithm based on context,C-SRA),该方法可以从嘈杂的上下文中有效选取与评分相关的上下文信息,并将选取的上下文信息分为主观上下文和客观上下文两类。基于LDOS-CoMoDa数据集的两组对比实验显示,C-SRA算法无论是评分预测性能还是推荐性能均优于其他对比算法。展开更多
Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polyn...Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck ...Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.展开更多
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque...Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.展开更多
A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, ...A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, its discrete time model is achieved. This last one is successfully employed in determining the steady state locus of the Buck-Boost converter, both in CCM (continuous conduction mode) and DCM (discontinuous conduction mode). A novel continuous time equivalent circuit of the converter is introduced too, with the aim of determining a ripple free representation of the state variables of the system, over both transient and steady state operation. Then, a predictive current control algorithm, suitable in both CCM and DCM, is developed and properly checked by means of computer simulations. The corresponding results have highlighted the effectiveness of the proposed modelling and of the predictive control algorithm, both in CCM and DCM.展开更多
A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser.This paper proposes a max-flow algorithm in bipartite networks to de...A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser.This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks.Firstly,we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure.Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem.This method is applied to a variety of real-world and artificial complex networks,and the partition results confirm its effectiveness and accuracy.展开更多
An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on t...An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on the matrix equation in MAF(k) is made in order to impose the implicit boundary conditions properly.To be in consistent with the implicit solver for the interior domain,an implicit scheme for NSCBC is formulated.The performance of the developed algorithm is investigated using spatially evolving zero pressure gradient boundary layer over a flat plate and a wall jet mixing with a cross flow over a flat plate with a square hole as the test cases.The numerical results are compared to the existing experimental datasets and a number of general correlations,together with other available numerical solutions,which demonstrate that the developed algorithm possesses promising capacity for simulating the subsonic viscous flows with large CFL number.展开更多
文摘为了验证用户对项目评分时所处的上下文环境是否会对用户的偏好产生影响,基于矩阵过程的马尔科夫分解方法,提出了一种基于上下文的流式推荐算法(streaming recommendation algorithm based on context,C-SRA),该方法可以从嘈杂的上下文中有效选取与评分相关的上下文信息,并将选取的上下文信息分为主观上下文和客观上下文两类。基于LDOS-CoMoDa数据集的两组对比实验显示,C-SRA算法无论是评分预测性能还是推荐性能均优于其他对比算法。
文摘Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
基金supported by China MOST project (No.2012BAH46B04)
文摘Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.
文摘Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.
文摘A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, its discrete time model is achieved. This last one is successfully employed in determining the steady state locus of the Buck-Boost converter, both in CCM (continuous conduction mode) and DCM (discontinuous conduction mode). A novel continuous time equivalent circuit of the converter is introduced too, with the aim of determining a ripple free representation of the state variables of the system, over both transient and steady state operation. Then, a predictive current control algorithm, suitable in both CCM and DCM, is developed and properly checked by means of computer simulations. The corresponding results have highlighted the effectiveness of the proposed modelling and of the predictive control algorithm, both in CCM and DCM.
基金Supported by the National Natural Science Foundation of China under Grant No.11271006Shandong Provincial Natural Science Foundation under Grant No.ZR2012GQ002
文摘A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser.This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks.Firstly,we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure.Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem.This method is applied to a variety of real-world and artificial complex networks,and the partition results confirm its effectiveness and accuracy.
文摘An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on the matrix equation in MAF(k) is made in order to impose the implicit boundary conditions properly.To be in consistent with the implicit solver for the interior domain,an implicit scheme for NSCBC is formulated.The performance of the developed algorithm is investigated using spatially evolving zero pressure gradient boundary layer over a flat plate and a wall jet mixing with a cross flow over a flat plate with a square hole as the test cases.The numerical results are compared to the existing experimental datasets and a number of general correlations,together with other available numerical solutions,which demonstrate that the developed algorithm possesses promising capacity for simulating the subsonic viscous flows with large CFL number.