AIM: To study the morphology and ontogeny of dendritic cells of Peyer's patches in rats at different development periods. METHODS: The morphometric and flow cytometric analyses were performed to detect all the para...AIM: To study the morphology and ontogeny of dendritic cells of Peyer's patches in rats at different development periods. METHODS: The morphometric and flow cytometric analyses were performed to detect all the parameters of villous-crypts axis and the number of OX62+DC, OX62+CD4+SIRP+DC, and OX62+CD4-SIRP-DC in the small intestine in different groups of rats. The relationship between the parameters of villous-axis and the number of DC and DC subtype were analyzed. RESULTS: All morphometric parameters changed significantly with the development of pups in the different age groups (F = 10.751, 12.374, 16.527, 5.291, 3.486; P = 0.000, 0.000, 0.000, 0.001, 0.015). Villous height levels were unstable and increased from 115.24μm to 140.43 μm as early as 3 wk postpartum. Villous area increased significantly between 5 and 7 wk postpartum, peeked up to 13817.60 tam2 at 7 wk postpartum. Villous height and crypt depth ratios were relatively stable and increased significantly from 2.80 + 1.01 to 4.54 =1= 1.56, 9-11 wk postpartum. The expression of OX62+DC increased from 33.30%±5.80% to 80%± 17.30%, 3-11 wk postpartum (F =5.536, P = 0.0013). OX62+CD4+SIRP+DC subset levels detected in single-cell suspensions of rat total Peyer's patch dendritic cells (PP-DCs) increased significantly from 30.73% ± 5.16% to 35.50% ± 4.08%, 5-7 wk postpartum and from 34.20% ±1.35% to 43.60% ± 2.07% 9-11 wk postpartum (F = 7.216, P = 0.005). CONCLUSION: This study confirms the agerelated changes in villous-crypt axis differentiation in the small intestine. Simultaneously, there are also development and maturation in rat PP-DCs phenotypic expression. Furthermore, the morphological changes of intestinal mucosa and the development of immune cells (especially DC) peaked at 9-11 wk postpartum, indicating that the intestinal mucosae reached a relatively mature state at 11 wk postpartum.展开更多
Advances in fabrication of mesoscopic membrane sensors with unique structures and morphologies inside anodic alumina membrane (AAM) nanochannels have led to the development of various methods for detecting, visualiz...Advances in fabrication of mesoscopic membrane sensors with unique structures and morphologies inside anodic alumina membrane (AAM) nanochannels have led to the development of various methods for detecting, visualizing, adsorbing, filtering, and recovering ultra-trace concentrations of toxic metal ions, such as Hg^2+ and Pb^2+, in water and blood. These often "one-pot" screening methods offer advantages over conventional methods in that they do not require sophisticated instruments or laborious sample preparation. In the present study, we fabricated two mesoscopic membrane sensors for naked-eye detection, recognition, filtration, and recovery of Hg^2+ and Pb^2+ in biological and environmental samples. These sensors were characterized by the dense immobilization of organic colorants on the mesopore surfaces of silica nanotubes that were constructed using the nanochannels of an AAM as a scaffold. We confirmed that the nanotubes were oriented along the long axis of the AAM nanochannels, open at both ends, and completely and uniformly filled with organic colorants; also, the dense immobilization of the organic colorants did not affect the speed of ion-to-ligand binding events. We used simple, desk-top, flow-through assays to assess the suitability of the developed membrane sensors for detection, removal, and filtration of Hg^2+ and Pb^2+ with respect to recyclability and continuous monitoring. Removal of the target ions from biological fluids was assessed by means of flow cytometric analysis. Our results demonstrate the potential of our membrane sensors to be used for preventing the health risks associated with exposure to toxic metal ions in the environment and blood.展开更多
基金Supported by Grants from the National Natural Science Foundation of China,No.30571979
文摘AIM: To study the morphology and ontogeny of dendritic cells of Peyer's patches in rats at different development periods. METHODS: The morphometric and flow cytometric analyses were performed to detect all the parameters of villous-crypts axis and the number of OX62+DC, OX62+CD4+SIRP+DC, and OX62+CD4-SIRP-DC in the small intestine in different groups of rats. The relationship between the parameters of villous-axis and the number of DC and DC subtype were analyzed. RESULTS: All morphometric parameters changed significantly with the development of pups in the different age groups (F = 10.751, 12.374, 16.527, 5.291, 3.486; P = 0.000, 0.000, 0.000, 0.001, 0.015). Villous height levels were unstable and increased from 115.24μm to 140.43 μm as early as 3 wk postpartum. Villous area increased significantly between 5 and 7 wk postpartum, peeked up to 13817.60 tam2 at 7 wk postpartum. Villous height and crypt depth ratios were relatively stable and increased significantly from 2.80 + 1.01 to 4.54 =1= 1.56, 9-11 wk postpartum. The expression of OX62+DC increased from 33.30%±5.80% to 80%± 17.30%, 3-11 wk postpartum (F =5.536, P = 0.0013). OX62+CD4+SIRP+DC subset levels detected in single-cell suspensions of rat total Peyer's patch dendritic cells (PP-DCs) increased significantly from 30.73% ± 5.16% to 35.50% ± 4.08%, 5-7 wk postpartum and from 34.20% ±1.35% to 43.60% ± 2.07% 9-11 wk postpartum (F = 7.216, P = 0.005). CONCLUSION: This study confirms the agerelated changes in villous-crypt axis differentiation in the small intestine. Simultaneously, there are also development and maturation in rat PP-DCs phenotypic expression. Furthermore, the morphological changes of intestinal mucosa and the development of immune cells (especially DC) peaked at 9-11 wk postpartum, indicating that the intestinal mucosae reached a relatively mature state at 11 wk postpartum.
文摘Advances in fabrication of mesoscopic membrane sensors with unique structures and morphologies inside anodic alumina membrane (AAM) nanochannels have led to the development of various methods for detecting, visualizing, adsorbing, filtering, and recovering ultra-trace concentrations of toxic metal ions, such as Hg^2+ and Pb^2+, in water and blood. These often "one-pot" screening methods offer advantages over conventional methods in that they do not require sophisticated instruments or laborious sample preparation. In the present study, we fabricated two mesoscopic membrane sensors for naked-eye detection, recognition, filtration, and recovery of Hg^2+ and Pb^2+ in biological and environmental samples. These sensors were characterized by the dense immobilization of organic colorants on the mesopore surfaces of silica nanotubes that were constructed using the nanochannels of an AAM as a scaffold. We confirmed that the nanotubes were oriented along the long axis of the AAM nanochannels, open at both ends, and completely and uniformly filled with organic colorants; also, the dense immobilization of the organic colorants did not affect the speed of ion-to-ligand binding events. We used simple, desk-top, flow-through assays to assess the suitability of the developed membrane sensors for detection, removal, and filtration of Hg^2+ and Pb^2+ with respect to recyclability and continuous monitoring. Removal of the target ions from biological fluids was assessed by means of flow cytometric analysis. Our results demonstrate the potential of our membrane sensors to be used for preventing the health risks associated with exposure to toxic metal ions in the environment and blood.