为数众多的计算颗粒初始流态化速度的公式大体上分为三类:第一类以Ergun公式为基础,引入经验系数加以修正;第二类以某种流体力学关系为基础;第三类属于纯经验公式。这三种类型中,以第一类式子有较大范围之Ar适应性,比较适用。本文提出...为数众多的计算颗粒初始流态化速度的公式大体上分为三类:第一类以Ergun公式为基础,引入经验系数加以修正;第二类以某种流体力学关系为基础;第三类属于纯经验公式。这三种类型中,以第一类式子有较大范围之Ar适应性,比较适用。本文提出的计算式子也属于Ergun型,从目前掌握的实验数据看来,比工程界广泛应用的Wen and Yu式子用于计算液-固流态化系统有更高的精确性,而且对球形与非球形颗粒都适用。展开更多
The effect of vertical internal baffles on the particle mixing and graindrying characteristics in a batch fluidized bed column is investigated. Experimental work wascarried out in a 3m high rectangular fluidized bed d...The effect of vertical internal baffles on the particle mixing and graindrying characteristics in a batch fluidized bed column is investigated. Experimental work wascarried out in a 3m high rectangular fluidized bed dryer of cross sectional area of 0.15 m x 0.61 mat different operating conditions using paddy, a group D particle, as the fluidizing material. Theresults of the study showed that the fluidized bed dryer system with vertical internal baffles gavebetter particle mixing effect in the bed of particles than that without vertical internal baffles.This is due to the fact that the vertical internal baffle act as gas bubble breakers by breaking upthe large gas bubbles into smaller ones. The smaller bubbles cause a more vigorous mixing in the bedof particles before finally erupting at the bed surface. This improves the contacting efficiencyand enhanced the heat and mass transfer of the fluidized bed system. Thus a higher drying rate wasobtained in the falling rate period because the higher contacting efficiency increases theevaporation rate at the particle surface. However, the drying rate in the diffusion region showslittle improvement because the moisture diffusivity does not depend on the contacting efficiency.The fluidized bed dryer with vertical internal baffles could therefore be used in the initial rapiddrying stage in a two stage drying strategy for paddy. The insertion of vertical internal bafflesinto a fluidized bed system improves the processing of Group D particles in a fluidized bed systemespecially if the system is large in scale.展开更多
Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studi...Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system.展开更多
文摘为数众多的计算颗粒初始流态化速度的公式大体上分为三类:第一类以Ergun公式为基础,引入经验系数加以修正;第二类以某种流体力学关系为基础;第三类属于纯经验公式。这三种类型中,以第一类式子有较大范围之Ar适应性,比较适用。本文提出的计算式子也属于Ergun型,从目前掌握的实验数据看来,比工程界广泛应用的Wen and Yu式子用于计算液-固流态化系统有更高的精确性,而且对球形与非球形颗粒都适用。
文摘The effect of vertical internal baffles on the particle mixing and graindrying characteristics in a batch fluidized bed column is investigated. Experimental work wascarried out in a 3m high rectangular fluidized bed dryer of cross sectional area of 0.15 m x 0.61 mat different operating conditions using paddy, a group D particle, as the fluidizing material. Theresults of the study showed that the fluidized bed dryer system with vertical internal baffles gavebetter particle mixing effect in the bed of particles than that without vertical internal baffles.This is due to the fact that the vertical internal baffle act as gas bubble breakers by breaking upthe large gas bubbles into smaller ones. The smaller bubbles cause a more vigorous mixing in the bedof particles before finally erupting at the bed surface. This improves the contacting efficiencyand enhanced the heat and mass transfer of the fluidized bed system. Thus a higher drying rate wasobtained in the falling rate period because the higher contacting efficiency increases theevaporation rate at the particle surface. However, the drying rate in the diffusion region showslittle improvement because the moisture diffusivity does not depend on the contacting efficiency.The fluidized bed dryer with vertical internal baffles could therefore be used in the initial rapiddrying stage in a two stage drying strategy for paddy. The insertion of vertical internal bafflesinto a fluidized bed system improves the processing of Group D particles in a fluidized bed systemespecially if the system is large in scale.
基金financially supported by the National Program on Key Basic Research Project of China (No.2012CB214904)the National Natural Science Foundation of China (Nos.51221462,51134022 and 51174203)
文摘Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system.