Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, ...A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, its discrete time model is achieved. This last one is successfully employed in determining the steady state locus of the Buck-Boost converter, both in CCM (continuous conduction mode) and DCM (discontinuous conduction mode). A novel continuous time equivalent circuit of the converter is introduced too, with the aim of determining a ripple free representation of the state variables of the system, over both transient and steady state operation. Then, a predictive current control algorithm, suitable in both CCM and DCM, is developed and properly checked by means of computer simulations. The corresponding results have highlighted the effectiveness of the proposed modelling and of the predictive control algorithm, both in CCM and DCM.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a ...In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.展开更多
Tubular flow reactors are mainly used in chemical industry and waste water discharged units. Control of output variables is very difficult because of the existence of high dead-time in these types of reactors. In the ...Tubular flow reactors are mainly used in chemical industry and waste water discharged units. Control of output variables is very difficult because of the existence of high dead-time in these types of reactors. In the present work, sodium hydroxide and acetic acid solutions were sent to the tubular flow reactor. The aim was to control p H at 7 in the nonlinear region. The p H control of a tubular flow reactor with high time delay and a highly nonlinear behavior in p H neutralization reaction was investigated experimentally in the face of the various load and set point changes. Firstly, efficiency of conventional Proportional-Integral-Derivative(PID) algorithm in the experiments was tested. Then self-tuning PID(STPID) control system was applied by using the ARMAX model. The model parameters were calculated from input–output data by using PRBS signal as disturbance and Bierman algorithm. Lastly, the experimental fuzzy control of p H based on fuzzy model was achieved to compare the success of fuzzy approach with the performance of other control cases studied.展开更多
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
文摘A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, its discrete time model is achieved. This last one is successfully employed in determining the steady state locus of the Buck-Boost converter, both in CCM (continuous conduction mode) and DCM (discontinuous conduction mode). A novel continuous time equivalent circuit of the converter is introduced too, with the aim of determining a ripple free representation of the state variables of the system, over both transient and steady state operation. Then, a predictive current control algorithm, suitable in both CCM and DCM, is developed and properly checked by means of computer simulations. The corresponding results have highlighted the effectiveness of the proposed modelling and of the predictive control algorithm, both in CCM and DCM.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
文摘In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.
文摘Tubular flow reactors are mainly used in chemical industry and waste water discharged units. Control of output variables is very difficult because of the existence of high dead-time in these types of reactors. In the present work, sodium hydroxide and acetic acid solutions were sent to the tubular flow reactor. The aim was to control p H at 7 in the nonlinear region. The p H control of a tubular flow reactor with high time delay and a highly nonlinear behavior in p H neutralization reaction was investigated experimentally in the face of the various load and set point changes. Firstly, efficiency of conventional Proportional-Integral-Derivative(PID) algorithm in the experiments was tested. Then self-tuning PID(STPID) control system was applied by using the ARMAX model. The model parameters were calculated from input–output data by using PRBS signal as disturbance and Bierman algorithm. Lastly, the experimental fuzzy control of p H based on fuzzy model was achieved to compare the success of fuzzy approach with the performance of other control cases studied.