This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in Shandong province. On the basis of monthly precipitation wet...This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in Shandong province. On the basis of monthly precipitation wet and dry summers in Shandong are defined according to a precipitation index. Then monthly OLR data, observed by NOAA satellites, are used to diagnose the features of deep convection for both wet and dry summers. It is found that negative anomalies seem dominant prior to wet summers, while large areas of positive anomalies appear prior to dry summers in tropical oceans. The differences are remarkable especially in the western, middle and eastern tropical Pacific as well as in the tropical Indian Ocean. Correlative analysis confirms the relations between OLR and precipitation. Subtropical High, which plays an essential role in summer rainfall, is also connected with the deep conviction. Altogether eight EOF-CCA forecast models are established on the basis of the above study. The assessment of the models relies on the gauge observing precipitation in 1997 and 1998. The results show that models using spring OLR data appear to be more practicable than those using winter OLR data, and the models established with OLR in western Pacific and the Indian Ocean perform better than the others.展开更多
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific...With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15°-18°N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15°N with lowest salinity off shore at 21°N, but mainly hugs the Mindanao coast south of 12°N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10°N at 130°E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).展开更多
The tafoni that develop in sandstone cliffs have attracted the interest of both scientists and the general public. A necklace-like tafone system, referred to here as beaded tafoni, has developed in the prominent cliff...The tafoni that develop in sandstone cliffs have attracted the interest of both scientists and the general public. A necklace-like tafone system, referred to here as beaded tafoni, has developed in the prominent cliffs of the Danxia landscapes within the Longhushan Global Geopark in the subtropical zone of South China. This paper presents a new model of the formation of this system of extraordinary beaded tafoni. The cliffs of the Danxia landscapes of the study area are composed of an alluvial conglomerate(i.e.,red beds). These Danxia landscapes have subrounded summits that are covered by vegetation and experience a nearly vertical water flow induced by gravity. Erosion and collapse of the outsized gravels and concentrated pebbles in the red beds give rise to the initial development of the beaded tafoni. The tafoni then become rounded and beaded as a result of reworking and decay by fluvial outwash. During storms, intense water flows run vertically down the cliffs and generate a whirling motion in the tafoni.Consequently, the inside walls of the tafoni gradually become wider and smoother. During the late development stage, the beaded tafoni tend to become indistinct or disappear because of the interconnection of the tafoni and subsequent merging with the bedding-controlled cavities.展开更多
A set of absolute geostrophic current(AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profi les in the world tropical oceans. The AGCs agre...A set of absolute geostrophic current(AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profi les in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin(except the North Indian Ocean, where the circulation is dominated by monsoons). The identifi ed nonSverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom(JEBAR) and mesoscale eddy nonlinearity.展开更多
Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971-2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere co...Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971-2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.展开更多
On-spot observation and field reconnaissance of debris flows have revealed that inflexion points in the longitudinal profile of a movable channel may easily become unstable points that significantly affect their entra...On-spot observation and field reconnaissance of debris flows have revealed that inflexion points in the longitudinal profile of a movable channel may easily become unstable points that significantly affect their entrainment behavior.In this study,small-scale flume experiments were performed to investigate the entrainment characteristics of debris flows over two types of inflexion points,namely,a convex point,which has an upslope gradient that is less than the downslope gradient,and a concave point,which has an upslope gradient that is greater than the downslope gradient.It was observed that when debris flowed over a convex point,the entrainment developed gradually and progressively from the convex point in the downstream direction,and the primary control factors were the slope gradient and friction angle.Conversely,when debris flowed over a concave point,the entrainment was characterized by impacting and impinging erosion rather than traditional hydraulic erosion,and the impingement angle of the flow significantly determined the maximum erosion depth and outflow exit angle.An empirical relationship between the topography change and the control factors was obtained from the experimental data.展开更多
A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992...A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.展开更多
Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall...Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.展开更多
The distribution of hydrography and circulation in the eastern tropical Indian Ocean(ETIO) during April-May 2011 were analyzed using cruise observations,satellite observations,and historic hydrographic data.It was obs...The distribution of hydrography and circulation in the eastern tropical Indian Ocean(ETIO) during April-May 2011 were analyzed using cruise observations,satellite observations,and historic hydrographic data.It was observed that warm water(>28℃) occupies the upper 50-m layer in the ETIO.Low-salinity surface water was observed at the mouth of the Bay of Bengal(BOB),which further extends to the Arabian Sea and off Sumatra via the Sri Lanka coast and the eastern bay mouth.Arabian Sea high-salinity water(ASHSW) is carried eastward along the equator to around 90°E by the equatorial undercurrent(EUC).It also runs south of Sri Lanka(north to 3°N) and in the western bay mouth(west to 87°E) but is much shallower than its counterpart at the equator.It is suggested to be the residual of the ASHSW,which intrudes into the BOB during the preceding southwest monsoon.Our results also show that,in the south of Sri Lanka,just below this subsurface high-salinity water,very-low-salinity water(about 34.8) occurs at depths of 100-200 m.Further analysis suggests that this low-salinity water comes from the BOB.展开更多
Zonation patterns of riparian vegetation have been sampled and described in mountain streams in two catchments in the Hottentots-Holland Mountains, Western Cape, South Africa. Six main vegetation types that differ in ...Zonation patterns of riparian vegetation have been sampled and described in mountain streams in two catchments in the Hottentots-Holland Mountains, Western Cape, South Africa. Six main vegetation types that differ in structure and species composition, are dominant along these river banks: Aquatic vegetation, Wetbanks, Palmiet, Scrub, Forest and Shrubland(Fynbos). The study aims to correlate the vegetation patterns to flooding patterns, in particular the inundation frequency and stream power. A problem arises: because these catchments are ungauged, like most mountain catchments, with the only weirs at the downstream end of the catchment. Discharge data at the weirs are extrapolated to the sites upstream by multiplication with a factor based on the size of the subcatchment that drains through a sample site. In this way, recurrence intervals for floods in mountain streams are derived. Discharges at sites are also calculated using bed roughness(Manning's n) and slope in straight sections with uniform flow conditions. Stream power is derived from the discharges calculated in this manner. The combination of stream power and recurrence intervals explains the occurrence of most vegetation types occurring on the banks, except for one type: Afromontane Forest. This type is probably more dependent on other factors, such as protection from fire and the depth of the groundwater table.展开更多
Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas are investigated based on the measurements of Tropical Rainfall Measuring Mission's(TRMM) Precipitation R...Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas are investigated based on the measurements of Tropical Rainfall Measuring Mission's(TRMM) Precipitation Radar(PR) from 1998 to 2007.Results indicate that convective precipitation are distributed mainly over the Intertropical Convergence Zone(ITCZ),the South Pacific Convergence Zone(SPCZ),the Asian Monsoon Region,regions between the South America and the Mid-America,and the Tropical Africa where the frequencies lie between 1% and 2%.But in four seasons,total area fractions of convective precipitation frequencies less than 1% all exceed 85%.The frequencies of stratiform precipitation are much higher than those of convective precipitation,and total area fractions of stratiform precipitation frequencies >1% are over 55% during four seasons.However,frequencies of the two rain types show not only remarkable regionality,but also distinct seasonal variations.Conditional rain rates of convective precipitation range from 6 to 14 mm/h whereas those of stratiform precipitation are smaller than 4 mm/h.Meanwhile,rain tops of convective precipitation are higher than those of stratiform precipitation.The mean profiles of the two rain types show significant latitudinal dependency.And the seasonal variations of precipitation profiles are displayed mainly in the variations of rain tops.The frequencies and conditional rain rates of both rain types over ocean are higher than those over land,but rain tops are just the opposite.Moreover,the seasonal variations of both rain types over ocean are weaker than those over land because of the different stable states of underlying surfaces.展开更多
A cold vent is an area where methane-rich fluid seepage occurs. This seepage may alter the local temperature, salinity, and subsequent accumulation of the gas hydrate. Using a kinetic gas hydrate formation model and i...A cold vent is an area where methane-rich fluid seepage occurs. This seepage may alter the local temperature, salinity, and subsequent accumulation of the gas hydrate. Using a kinetic gas hydrate formation model and in situ measurement of tempera- ture, salinity and fluid flux at the southern summit of Hydrate Ridge, we simuIate the gas hydrate accumulation at three distinct fluid sites: clam, bacterial mat, and gas discharge sites. At the clam sites (pore water flux 〈 20 kg m-2 yr-1), pore water advec- tion has little influence on temperature and salinity. However, the salinity and temperature are increased (peak salinity 〉 0.8 tool kg-1) by the formation of gas hydrate causing the base of the hydrate stability zone to move gradually from -115 to -70 meters below seafloor (mbsf). The gas hydrate saturation at the clam sites is relatively high. The water flux at the bacterial mat sites ranges from 100 to 2500 kg m-2 yr-1. The water flow suppresses the increase in salinity resulting in a salinity close to or slightly higher than that of seawater (〈 0.65 mol kg-l). Heat advection by water flow increases temperature significantly, shifting the base of the hydrate stability zone to above 50 or even 3 mbsf. The gas hydrate saturation is relatively low at the bacterial mat site. At the gas discharge sites, the pore water flux could reach 10^10 kg m-2 yr-1, and the temperature could reach that of the source area in 9 min. There is no gas hydrate formation at the gas discharge sites. Our simulative analysis therefore reveals that a lower pore water flux would result in lower salinity, higher temperature, and a shallower base of the hydrate sta- bility zone. This in turn induces a lower gas hydrate formation rate, lower hydrate saturation, and eventually less gas hydrate resources.展开更多
Seasonal variations in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon are analyzed using 10-year (1998-2007) Tropical Rainfall Measuring Mission (TRMM) precipitation radar (...Seasonal variations in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon are analyzed using 10-year (1998-2007) Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) rain products (2A25). Datasets from the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) 24 general circulation models (GCMs) are evaluated using TRMM PR rain products in terms of their ability to simulate convective and stratiform precipitation and their deficiencies. The results show that Asian monsoon convective and stratiform precipitation increases significantly after onset of the summer monsoon, but the percentage of convective precipitation clearly decreases over tropical areas while it increases in subtropical regions. The GCMs simulate well the seasonal variation in the contribution of Asian monsoon subtropical convective precipitation to the total rainfall; however, the simulated convective precipitation amount is high while the simulated stratiform precipitation amount is low relative to TRMM measurements, especially over the Asian monsoon tropical region. There is simultaneous TRMM-observed convective and stratiform precipitation in space and time, but GCMs cannot simulate this relationship between convective and stratiform precipitation, resulting in the deficiency of stratiform precipitation simulations.展开更多
To evaluate the effect of vegetative filter strips on sediment trapping, the spatial distribution of deposited sediment, and the size distribution of deposited particles from hyperconcentrated flows, a simulated grass...To evaluate the effect of vegetative filter strips on sediment trapping, the spatial distribution of deposited sediment, and the size distribution of deposited particles from hyperconcentrated flows, a simulated grass filter strip experiment was conducted with plastic grass using an adjustable slope steel flume. The simulated vegetation cover was 36%, and the inflow sediment concentrations applied were 147, 238, 320, and 429 kg m^(-3). The sediment concentration in the outflow, and the sediment particle size were determined. The results showed that the grass filter strips trapped most of the sediment from inflow at low sediment concentration. The deposition efficiency decreased with increasing sediment concentration, being 55.2% and 15.7% in the 147 and 429 kg m^(-3)sediment treatments, respectively. Most of the deposited sediments were distributed in the upper flume. In addition, the grass filter strips mainly trapped the coarse sediment (particle size>10 μm).展开更多
The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-str...The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.展开更多
In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surf...In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surface air entrainment.In this research,the process of free-surface entrapped deformation is analyzed theoretically and the critical radius of curvature for air entrainment is obtained,affected by flow mean velocity and depth.When the severity of local free-surface deformation exceeds the critical condition,the entrapped free surface encounters closure in the unstable deformation movement process,resulting in air entrainment.This inference agrees well with observed experimental results that are obtained from the processes of surface entrapped deformation and air entrainment captured by a high-speed camera-based data acquisition system.This agreement indicates that self-aeration occurs in low-velocity open-channel flows.It is also confirmed that free-surface turbulent deformation provides a mechanism for air entrainment.展开更多
基金Physical Causes of Short-term Drought and Floods Climate in Shandong Province and the Prediction a sub-subject in the item of Studies on Short-term Climate Prediction System in China (96-908-05-06-10)
文摘This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in Shandong province. On the basis of monthly precipitation wet and dry summers in Shandong are defined according to a precipitation index. Then monthly OLR data, observed by NOAA satellites, are used to diagnose the features of deep convection for both wet and dry summers. It is found that negative anomalies seem dominant prior to wet summers, while large areas of positive anomalies appear prior to dry summers in tropical oceans. The differences are remarkable especially in the western, middle and eastern tropical Pacific as well as in the tropical Indian Ocean. Correlative analysis confirms the relations between OLR and precipitation. Subtropical High, which plays an essential role in summer rainfall, is also connected with the deep conviction. Altogether eight EOF-CCA forecast models are established on the basis of the above study. The assessment of the models relies on the gauge observing precipitation in 1997 and 1998. The results show that models using spring OLR data appear to be more practicable than those using winter OLR data, and the models established with OLR in western Pacific and the Indian Ocean perform better than the others.
基金Supported by the National Natural Science Foundation of China (Nos 40890153 and 40576016)
文摘With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15°-18°N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15°N with lowest salinity off shore at 21°N, but mainly hugs the Mindanao coast south of 12°N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10°N at 130°E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
基金financially supported by National Natural Science Foundation of China (Grant Nos. 41772197, 41602113)Open Research Fund from the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology+1 种基金 Grant No. DMSM2017011)Jiangxi Provincial Graduate Innovation Fund Project (YC2018-S336)
文摘The tafoni that develop in sandstone cliffs have attracted the interest of both scientists and the general public. A necklace-like tafone system, referred to here as beaded tafoni, has developed in the prominent cliffs of the Danxia landscapes within the Longhushan Global Geopark in the subtropical zone of South China. This paper presents a new model of the formation of this system of extraordinary beaded tafoni. The cliffs of the Danxia landscapes of the study area are composed of an alluvial conglomerate(i.e.,red beds). These Danxia landscapes have subrounded summits that are covered by vegetation and experience a nearly vertical water flow induced by gravity. Erosion and collapse of the outsized gravels and concentrated pebbles in the red beds give rise to the initial development of the beaded tafoni. The tafoni then become rounded and beaded as a result of reworking and decay by fluvial outwash. During storms, intense water flows run vertically down the cliffs and generate a whirling motion in the tafoni.Consequently, the inside walls of the tafoni gradually become wider and smoother. During the late development stage, the beaded tafoni tend to become indistinct or disappear because of the interconnection of the tafoni and subsequent merging with the bedding-controlled cavities.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956001)the CMA(No.GYHY201306018)+2 种基金the Chinese Academy of Sciences(CAS)(No.XDA11010301)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)the State Oceanic Administration(SOA)(No.GASI-03-01-01-05)
文摘A set of absolute geostrophic current(AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profi les in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin(except the North Indian Ocean, where the circulation is dominated by monsoons). The identifi ed nonSverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom(JEBAR) and mesoscale eddy nonlinearity.
基金Research on Interdecadal Variation of the Progression of Subtropical Summer Monsoon inEast Asia, a specialized project of China Meteorological AdministrationResearch on Subtropical Monsoon, aspecialized project of Shanghai Meteorological Bureau
文摘Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971-2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.
基金funded by the Key Research Program of the Chinese Academy of Sciences (Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China (Grant No.41371039)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University (Grant No.SKHL1426)
文摘On-spot observation and field reconnaissance of debris flows have revealed that inflexion points in the longitudinal profile of a movable channel may easily become unstable points that significantly affect their entrainment behavior.In this study,small-scale flume experiments were performed to investigate the entrainment characteristics of debris flows over two types of inflexion points,namely,a convex point,which has an upslope gradient that is less than the downslope gradient,and a concave point,which has an upslope gradient that is greater than the downslope gradient.It was observed that when debris flowed over a convex point,the entrainment developed gradually and progressively from the convex point in the downstream direction,and the primary control factors were the slope gradient and friction angle.Conversely,when debris flowed over a concave point,the entrainment was characterized by impacting and impinging erosion rather than traditional hydraulic erosion,and the impingement angle of the flow significantly determined the maximum erosion depth and outflow exit angle.An empirical relationship between the topography change and the control factors was obtained from the experimental data.
文摘A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.
基金National Key Fundamental Project for Research Development and Plan (2004CB418301)Natural Science Foundation of China (40575018, 40675033)
文摘Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.
基金supported by the Ocean Public Welfare Scientific Research Project,State Oceanic Administration(Grant No.201005033-4)Comprehensive Fields Experiments of Oceanology in Indian Ocean in 2011(Grant No.41049903)+1 种基金the National Natural Science Foundation of China(Grant No.40806014)the National Basic Research Program of China(Grant Nos.2009CB421205 and 2011CB403502)
文摘The distribution of hydrography and circulation in the eastern tropical Indian Ocean(ETIO) during April-May 2011 were analyzed using cruise observations,satellite observations,and historic hydrographic data.It was observed that warm water(>28℃) occupies the upper 50-m layer in the ETIO.Low-salinity surface water was observed at the mouth of the Bay of Bengal(BOB),which further extends to the Arabian Sea and off Sumatra via the Sri Lanka coast and the eastern bay mouth.Arabian Sea high-salinity water(ASHSW) is carried eastward along the equator to around 90°E by the equatorial undercurrent(EUC).It also runs south of Sri Lanka(north to 3°N) and in the western bay mouth(west to 87°E) but is much shallower than its counterpart at the equator.It is suggested to be the residual of the ASHSW,which intrudes into the BOB during the preceding southwest monsoon.Our results also show that,in the south of Sri Lanka,just below this subsurface high-salinity water,very-low-salinity water(about 34.8) occurs at depths of 100-200 m.Further analysis suggests that this low-salinity water comes from the BOB.
基金supported by funding from the National Research Foundation to C. Boucher and the VSB Funds (the Netherlands) to E. Siebenadditional funding from the Water Research Commission
文摘Zonation patterns of riparian vegetation have been sampled and described in mountain streams in two catchments in the Hottentots-Holland Mountains, Western Cape, South Africa. Six main vegetation types that differ in structure and species composition, are dominant along these river banks: Aquatic vegetation, Wetbanks, Palmiet, Scrub, Forest and Shrubland(Fynbos). The study aims to correlate the vegetation patterns to flooding patterns, in particular the inundation frequency and stream power. A problem arises: because these catchments are ungauged, like most mountain catchments, with the only weirs at the downstream end of the catchment. Discharge data at the weirs are extrapolated to the sites upstream by multiplication with a factor based on the size of the subcatchment that drains through a sample site. In this way, recurrence intervals for floods in mountain streams are derived. Discharges at sites are also calculated using bed roughness(Manning's n) and slope in straight sections with uniform flow conditions. Stream power is derived from the discharges calculated in this manner. The combination of stream power and recurrence intervals explains the occurrence of most vegetation types occurring on the banks, except for one type: Afromontane Forest. This type is probably more dependent on other factors, such as protection from fire and the depth of the groundwater table.
基金supported by Major State Basic Research Development Program(Grant No.2010CB428601)Knowledge Innovation Project of Chinese Academy of Sciences(Grant Nos.KZCX2-YW-Q11-04 and KJCX2-YW-N25)+3 种基金Special Funds for Public Welfare of China(Grant Nos.GYHY200906002,GYHY200706032)Science and Technology Special Basic Research of the Ministry of Science and Technology(Grant No.2007FY110700)Key Program of the National Natural Science Foundation of China(Grant No.40730950)National Distinguish Young Scientists Foundation(Grant No.40805008)
文摘Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas are investigated based on the measurements of Tropical Rainfall Measuring Mission's(TRMM) Precipitation Radar(PR) from 1998 to 2007.Results indicate that convective precipitation are distributed mainly over the Intertropical Convergence Zone(ITCZ),the South Pacific Convergence Zone(SPCZ),the Asian Monsoon Region,regions between the South America and the Mid-America,and the Tropical Africa where the frequencies lie between 1% and 2%.But in four seasons,total area fractions of convective precipitation frequencies less than 1% all exceed 85%.The frequencies of stratiform precipitation are much higher than those of convective precipitation,and total area fractions of stratiform precipitation frequencies >1% are over 55% during four seasons.However,frequencies of the two rain types show not only remarkable regionality,but also distinct seasonal variations.Conditional rain rates of convective precipitation range from 6 to 14 mm/h whereas those of stratiform precipitation are smaller than 4 mm/h.Meanwhile,rain tops of convective precipitation are higher than those of stratiform precipitation.The mean profiles of the two rain types show significant latitudinal dependency.And the seasonal variations of precipitation profiles are displayed mainly in the variations of rain tops.The frequencies and conditional rain rates of both rain types over ocean are higher than those over land,but rain tops are just the opposite.Moreover,the seasonal variations of both rain types over ocean are weaker than those over land because of the different stable states of underlying surfaces.
基金supported by National Basic Research Program of China (Grant No.2009CB219508)Chinese Academy of Sciences (Grant No.KZCX2-YW-GJ03)+2 种基金National Natural Science Foundation of China (GrantNos. 91228206 & 40725011)GIGCAS 135 Program (Grant No.Y234021001)Scientific and Technological Program of Guangdong Province (Grant No. 2011A080403021)
文摘A cold vent is an area where methane-rich fluid seepage occurs. This seepage may alter the local temperature, salinity, and subsequent accumulation of the gas hydrate. Using a kinetic gas hydrate formation model and in situ measurement of tempera- ture, salinity and fluid flux at the southern summit of Hydrate Ridge, we simuIate the gas hydrate accumulation at three distinct fluid sites: clam, bacterial mat, and gas discharge sites. At the clam sites (pore water flux 〈 20 kg m-2 yr-1), pore water advec- tion has little influence on temperature and salinity. However, the salinity and temperature are increased (peak salinity 〉 0.8 tool kg-1) by the formation of gas hydrate causing the base of the hydrate stability zone to move gradually from -115 to -70 meters below seafloor (mbsf). The gas hydrate saturation at the clam sites is relatively high. The water flux at the bacterial mat sites ranges from 100 to 2500 kg m-2 yr-1. The water flow suppresses the increase in salinity resulting in a salinity close to or slightly higher than that of seawater (〈 0.65 mol kg-l). Heat advection by water flow increases temperature significantly, shifting the base of the hydrate stability zone to above 50 or even 3 mbsf. The gas hydrate saturation is relatively low at the bacterial mat site. At the gas discharge sites, the pore water flux could reach 10^10 kg m-2 yr-1, and the temperature could reach that of the source area in 9 min. There is no gas hydrate formation at the gas discharge sites. Our simulative analysis therefore reveals that a lower pore water flux would result in lower salinity, higher temperature, and a shallower base of the hydrate sta- bility zone. This in turn induces a lower gas hydrate formation rate, lower hydrate saturation, and eventually less gas hydrate resources.
基金supported by National Natural Science Foundation of China (Grant No. 40428002)Scientific Research on Public Causes of China (Grant No. 2004 CB418303)
文摘Seasonal variations in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon are analyzed using 10-year (1998-2007) Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) rain products (2A25). Datasets from the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) 24 general circulation models (GCMs) are evaluated using TRMM PR rain products in terms of their ability to simulate convective and stratiform precipitation and their deficiencies. The results show that Asian monsoon convective and stratiform precipitation increases significantly after onset of the summer monsoon, but the percentage of convective precipitation clearly decreases over tropical areas while it increases in subtropical regions. The GCMs simulate well the seasonal variation in the contribution of Asian monsoon subtropical convective precipitation to the total rainfall; however, the simulated convective precipitation amount is high while the simulated stratiform precipitation amount is low relative to TRMM measurements, especially over the Asian monsoon tropical region. There is simultaneous TRMM-observed convective and stratiform precipitation in space and time, but GCMs cannot simulate this relationship between convective and stratiform precipitation, resulting in the deficiency of stratiform precipitation simulations.
基金Supported by the National Natural Science Foundation of China (No. 40901131)the Fundamental Research Funds for the Central Universities of China (No. GK201103003)
文摘To evaluate the effect of vegetative filter strips on sediment trapping, the spatial distribution of deposited sediment, and the size distribution of deposited particles from hyperconcentrated flows, a simulated grass filter strip experiment was conducted with plastic grass using an adjustable slope steel flume. The simulated vegetation cover was 36%, and the inflow sediment concentrations applied were 147, 238, 320, and 429 kg m^(-3). The sediment concentration in the outflow, and the sediment particle size were determined. The results showed that the grass filter strips trapped most of the sediment from inflow at low sediment concentration. The deposition efficiency decreased with increasing sediment concentration, being 55.2% and 15.7% in the 147 and 429 kg m^(-3)sediment treatments, respectively. Most of the deposited sediments were distributed in the upper flume. In addition, the grass filter strips mainly trapped the coarse sediment (particle size>10 μm).
基金supported by the National Natural Science Foundation of China(Grant No.51422906)
文摘The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.
基金supported by the National Natural Science Foundation of China (Grant No. 51379138)the National Basic Research Program of China (“973” Project) (Grant No. 2013CB035905)
文摘In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surface air entrainment.In this research,the process of free-surface entrapped deformation is analyzed theoretically and the critical radius of curvature for air entrainment is obtained,affected by flow mean velocity and depth.When the severity of local free-surface deformation exceeds the critical condition,the entrapped free surface encounters closure in the unstable deformation movement process,resulting in air entrainment.This inference agrees well with observed experimental results that are obtained from the processes of surface entrapped deformation and air entrainment captured by a high-speed camera-based data acquisition system.This agreement indicates that self-aeration occurs in low-velocity open-channel flows.It is also confirmed that free-surface turbulent deformation provides a mechanism for air entrainment.