The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Gate current for pMOSFETs is composed of direct tunneling current,channel hot hole,electron injection current,and highly energetic hot holes by secondary impact ionization.The device degradation under V g=V d/2 is m...Gate current for pMOSFETs is composed of direct tunneling current,channel hot hole,electron injection current,and highly energetic hot holes by secondary impact ionization.The device degradation under V g=V d/2 is mainly caused by the injection of hot electrons by primary impact ionization and hot holes by secondary impact ionization,and the device lifetime is assumed to be inversely proportional to the hot holes,which is able to surmount Si-SiO 2 barrier and be injected into the gate oxide.A new lifetime prediction model is proposed on the basis and validated to agree well with the experiment.展开更多
AIM:To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia(MFH). METHODS:Nanospheres were prepared by chemica...AIM:To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia(MFH). METHODS:Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed.Hemolysis,micronucleus,cell viability,and LD50 along with other in vivo tests were performed to evaluate the Fe2O3 microsphere biocompatibility.The inhibition ratio of tumors after Fe2O3 and As2O3/Fe2O3 injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. RESULTS:Fe2O3 and As2O3/Fe2O3 particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope.Upon exposure to an alternating magnetic field(AMF),the temperature of the suspension of magnetic particles increased to 41-51℃,depending on different particle concentrations,and remained stable thereafter.Nanosized Fe2O3 microspheres are a new kind of biomaterial without cytotoxic effects.The LD50 of both Fe2O3 and As2O3/Fe2O3 in mice was higher than 5 g/kg.One to four weeks after Fe2O3 and As2O3/Fe2O3 complex injections into healthy pig livers,no significant differences were found in serum AST,ALT,BUN and Cr levels among thepigs of all groups(P>0.05),and no obvious pathological alterations were observed.After exposure to alternating magnetic fields,the inhibition ratio of the tumors was significantly different from controls in the Fe2O3 and As2O3/Fe2O3 groups(68.74% and 82.79%,respectively; P<0.01).Tumors of mice in treatment groups showed obvious necrosis,while normal tissues adjoining the tumor and internal organs did not. CONCLUSION:Fe2O3 and As2O3/Fe2O3 complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore,nanospheres are ideal carriers for tumortargeted therapy.展开更多
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
基金国家重点基础研究发展计划 ( No.G2 0 0 0 0 3 65 0 3 ) Motorola Digital DNA Laboratory资助项目~~
文摘Gate current for pMOSFETs is composed of direct tunneling current,channel hot hole,electron injection current,and highly energetic hot holes by secondary impact ionization.The device degradation under V g=V d/2 is mainly caused by the injection of hot electrons by primary impact ionization and hot holes by secondary impact ionization,and the device lifetime is assumed to be inversely proportional to the hot holes,which is able to surmount Si-SiO 2 barrier and be injected into the gate oxide.A new lifetime prediction model is proposed on the basis and validated to agree well with the experiment.
基金Supported by The National Natural Science Foundation of China,30770584the State 863 Plan,2002AA302207,2007AA03Z356
文摘AIM:To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia(MFH). METHODS:Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed.Hemolysis,micronucleus,cell viability,and LD50 along with other in vivo tests were performed to evaluate the Fe2O3 microsphere biocompatibility.The inhibition ratio of tumors after Fe2O3 and As2O3/Fe2O3 injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. RESULTS:Fe2O3 and As2O3/Fe2O3 particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope.Upon exposure to an alternating magnetic field(AMF),the temperature of the suspension of magnetic particles increased to 41-51℃,depending on different particle concentrations,and remained stable thereafter.Nanosized Fe2O3 microspheres are a new kind of biomaterial without cytotoxic effects.The LD50 of both Fe2O3 and As2O3/Fe2O3 in mice was higher than 5 g/kg.One to four weeks after Fe2O3 and As2O3/Fe2O3 complex injections into healthy pig livers,no significant differences were found in serum AST,ALT,BUN and Cr levels among thepigs of all groups(P>0.05),and no obvious pathological alterations were observed.After exposure to alternating magnetic fields,the inhibition ratio of the tumors was significantly different from controls in the Fe2O3 and As2O3/Fe2O3 groups(68.74% and 82.79%,respectively; P<0.01).Tumors of mice in treatment groups showed obvious necrosis,while normal tissues adjoining the tumor and internal organs did not. CONCLUSION:Fe2O3 and As2O3/Fe2O3 complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore,nanospheres are ideal carriers for tumortargeted therapy.