With great increase of mobile service in recent years,high quality of experience(QoE) is becoming a comprehensive and major goal for service provider.To unify evaluations of different services,mean opinion score(MOS) ...With great increase of mobile service in recent years,high quality of experience(QoE) is becoming a comprehensive and major goal for service provider.To unify evaluations of different services,mean opinion score(MOS) as a subjective assessment is usually adopted for accurate and convincing reflection of user perceived quality.In this paper,we consider the effect of the burst transmission of best effort(BE) traffic on the uses with real time video traffic in the same cell.We extend the rate scaling process which was initially used to shape burstiness of BE users as interference to handle the scenario that BE users act as resource competitors with video users.A power reallocation strategy between the two types of users is presented and an algorithm further improving the fairness of BE users is proposed.The simulation results demonstrate that the proposed algorithm can not only promote the QoE of both types of users,but also guarantee the fairness among users.展开更多
The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligen...The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligent power distribution system.Constant power load(CPL)will degrade the stability of the DC microgrid and cause system voltage oscillation due to its negative resistance characteristics.As a result,the stability of DC microgrids with CPL has become a problem.At present,the research on the stability of DC microgrid is mainly focused on unipolar DC microgrid,while the research on bipolar DC microgrid lacks systematic discussion.The stability of DC microgrid using CPL was studied first,and then the current stability criteria of DC microgrid were summarized,and its research trend was analyzed.On this basis,aiming at the stability problem caused by CPL,the existing control methods were summarized from the perspective of source converter output impedance and load converter input impedance,and the current control methods were outlined as active and passive control methods.Lastly,the research path of bipolar DC microgrid stability with CPL was prospected.展开更多
Perovskite quantum-dot-based light-emitting diodes(QLEDs)are highly promising for future solid-state lightings and high-definition displays due to their excellent color purity.However,their device performance is easil...Perovskite quantum-dot-based light-emitting diodes(QLEDs)are highly promising for future solid-state lightings and high-definition displays due to their excellent color purity.However,their device performance is easily affected by charge accumulation induced luminescence quenching due to imbalanced charge injection in the devices.Here we report green perovskite QLEDs with simultaneously improved efficiency and operational lifetime through balancing the charge injection with the employment of a bilayered electron transport structure.The charge-balanced QLEDs exhibit a color-saturated green emission with a full-width at half-maximum(FWHM)of 18 nm and a peak at 520 nm,a low turn-on voltage of2.0 V and a champion external quantum efficiency(EQE)of 21.63%,representing one of the most efficient perovskite QLEDs so far.In addition,the devices with modulated charge balance demonstrate a nearly 20-fold improvement in the operational lifetime compared to the control device.Our results demonstrate the great potential of further improving the device performance of perovskite QLEDs toward practical applications in lightings and displays via rational device engineering.展开更多
基金supported by China National S&T Major Project 2013ZX03003002003Beijing Natural Science Foundation No.4152047+1 种基金the 863 project No.2014AA01A701111 Project of China under Grant B14010
文摘With great increase of mobile service in recent years,high quality of experience(QoE) is becoming a comprehensive and major goal for service provider.To unify evaluations of different services,mean opinion score(MOS) as a subjective assessment is usually adopted for accurate and convincing reflection of user perceived quality.In this paper,we consider the effect of the burst transmission of best effort(BE) traffic on the uses with real time video traffic in the same cell.We extend the rate scaling process which was initially used to shape burstiness of BE users as interference to handle the scenario that BE users act as resource competitors with video users.A power reallocation strategy between the two types of users is presented and an algorithm further improving the fairness of BE users is proposed.The simulation results demonstrate that the proposed algorithm can not only promote the QoE of both types of users,but also guarantee the fairness among users.
基金supported by National Natural Science Foundation of China(No.51767015)Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA317)Tianyou Innovation Team Support Program of Lanzhou Jiaotong University(No.TY202009)。
文摘The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligent power distribution system.Constant power load(CPL)will degrade the stability of the DC microgrid and cause system voltage oscillation due to its negative resistance characteristics.As a result,the stability of DC microgrids with CPL has become a problem.At present,the research on the stability of DC microgrid is mainly focused on unipolar DC microgrid,while the research on bipolar DC microgrid lacks systematic discussion.The stability of DC microgrid using CPL was studied first,and then the current stability criteria of DC microgrid were summarized,and its research trend was analyzed.On this basis,aiming at the stability problem caused by CPL,the existing control methods were summarized from the perspective of source converter output impedance and load converter input impedance,and the current control methods were outlined as active and passive control methods.Lastly,the research path of bipolar DC microgrid stability with CPL was prospected.
基金supported by the National Natural Science Foundation of China (51922049, 61604074)the National Key Research and Development Program of China (2016YFB0401701)+2 种基金the Natural Science Foundation of Jiangsu Province (BK20180020)the Fundamental Research Funds for the Central Universities (30920032102)PAPD of Jiangsu Higher Education Institutions
文摘Perovskite quantum-dot-based light-emitting diodes(QLEDs)are highly promising for future solid-state lightings and high-definition displays due to their excellent color purity.However,their device performance is easily affected by charge accumulation induced luminescence quenching due to imbalanced charge injection in the devices.Here we report green perovskite QLEDs with simultaneously improved efficiency and operational lifetime through balancing the charge injection with the employment of a bilayered electron transport structure.The charge-balanced QLEDs exhibit a color-saturated green emission with a full-width at half-maximum(FWHM)of 18 nm and a peak at 520 nm,a low turn-on voltage of2.0 V and a champion external quantum efficiency(EQE)of 21.63%,representing one of the most efficient perovskite QLEDs so far.In addition,the devices with modulated charge balance demonstrate a nearly 20-fold improvement in the operational lifetime compared to the control device.Our results demonstrate the great potential of further improving the device performance of perovskite QLEDs toward practical applications in lightings and displays via rational device engineering.