By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock unde...By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock under different loading stresses were obtained. By comparing with the creep rule of dry rock in the same location, the creep rule of deep saturated rock was analyzed. Based on the united rheological mechanical model, the rheological model of deep saturated rock was recognized, and the parameters of the model were determined. The results show that the creep curves are very smooth under low stress, but the phenomena of wave and catastrophe turn up under high stress, and the bearing capacity of rock is weakening over time. The rheological properties of saturated and dry rocks are very different under tlie condition of deep high stress, especially when unloading, degradation and damage of rock quality is more serious, and the effect of water cannot be neglected. The H--HIN--NJS model (Schofield-Scott-Blair model) was selected to represent the rheology rule of deep saturated rock, and the fitting curves of model agree well with the experiment data, so the selected model is reasonable.展开更多
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible ...A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.展开更多
Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Wat...Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Watershed on Sept. 4, 2007, July 25, 2010 and Sept. 4, 2010, blocked Parlung Zangbo River and produced dammed lakes, whose outburst flow made 50 m high terrace collapse at the opposite bank due to intense scouring on the foot of the terrace. As a result, the traffic was interrupted for 16 days in 2010 because that 900 m highway base was destructed and 430 m ruined. These debris flows were initiated by the glacial melting which was induced by continuous higher temperature and the following intensive rainfall, and expanded by moraines along channels and then blocked Parlung Zangbo. At the outlet of watershed,the density, velocity and peak discharge of debris flow was 2.06 t/m3, 12.7 m/s and 3334 m3/s, respectively. When the discharge at the outlet and the deposition volume into river exceeds 2125 m3/s and 126×103 m3, respectively, debris flow will completely blocked Parlung Zangbo. Moreover,if the shear stress of river flow on the foot of terrace and the inclination angel of terrace overruns 0. 377 N/m2 and 26°, respectively, the unconsolidated terrace will be eroded by outburst flow and collapse. It was strongly recommended for mitigation that identify and evade disastrous debris flows, reduce the junction angel of channels between river and watershed, build protecting wall for highway base and keep appropriate distance between highway and the edge of unconsolidated terrace.展开更多
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-...A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfall.It was found that the characteristic rainfall corresponds to the daily rainfall of 90% cumulative probability by analyzing the basin's daily rainfall histogram.The result provides a simple and useful method for estimating a debris-flow warning rainfall threshold from the daily rainfall distribution.It was applied to estimate the debris-flow warning rainfall threshold for the Subaohe basin,a watershed in the 2008 Wenchuan earthquake zone with many physical characteristics similar to those of the Jiangjia basin.展开更多
Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in hist...Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in history,and have caused destructive disaster to local residents at the mouth of ravine and blocked Brahmaputra.The huge altitude difference and the steep slope of the Zelongnong Ravine provide predominant energy conditions for the debris-flow.The drainage basin is located in the fast uplifted area,where the complicated geologic structure,the cracked rock,and the frequent earthquake make the rocks experience strong weathering,thus plenty of granular materials are available for the formation of debris-flows.Although this region is located in the rain shadow area,the precipitation is concentrated and most is with high intensity.Also,the strong glacier activity provides water source for debris-flow.According to literature reviews,most debris-flows in the ravine are induced by rainstorms,and their scales are relatively small.However,when the melted water is overlaid,the large scale debris-flows may occur.Parametric calculation such as the flow velocity and the runoff is conducted according to the monitoring data.The result shows that large debris-flows can be aroused when the rainstorm and the melted water are combined well,but the possibility of blocking off Brahmaputra is rare.The occurrence of the super debris-flows is closely related to the intense glacier activity(e.g.,glaciersurge).They often result in destructive disasters and are hard to be prevented and cured by engineering measures,due to the oversized scales.The hazard mitigation measures such as monitoring and prediction are proposed.展开更多
The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen’s test. In both the upper...The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen’s test. In both the upper reaches (Xiaohekou) and the lower reaches (Xiaohuangguayuan), the sediment fluxes showed a significant increase from 1970 to 2001, despite the fact that the water discharge did not change significantly during the period and numerous reservoir constructions which contribute to the trap of sediment. This can be attributed to the intensification of human activities, especially the activities related to land surface disturbances such as deforestation and afforestation, expansion of agriculture land, and road constructions. This increase is more significant in the lower reaches of the river observed at the place of Xiaohuangguayuan due to the dry-hot climate. The profound increase in sediment flux has significant implications for effective management of the sedimentation problems of the on-going Three Gorges Reservoir.展开更多
Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris...Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.展开更多
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under d...Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.展开更多
Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resis...Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.展开更多
Soil samples with clay content ranging from 15% to 31%, were taken from three debris flow gullies in Southwest China. Three debris flow slurry samples were prepared and tested with four measuring systems of an Anton P...Soil samples with clay content ranging from 15% to 31%, were taken from three debris flow gullies in Southwest China. Three debris flow slurry samples were prepared and tested with four measuring systems of an Anton Paar Physica MCR301 rheometer, including the concentric cylinder system,the parallel-plate system, the vane geometry, and the ball measuring system. All systems were smoothwalled. Flow curves were plotted and yield stress was determined using the Herschel-Bulkley model,showing differences among the different systems.Flow curves from the concentric cylinder and parallelplate systems involved two distinct regions, the low shear and the high shear regions. Yield stresses determined by data fitting in the low shear region were significantly lower than the values from the inclined channel test which is a practical method for determining yield stress. Flow curves in the high shear region are close to those from the vane geometry and the ball measuring system. The fitted values of yield stress are comparable to the values from the inclined channel test. The differences are caused by wall-slip effects in the low shear region.Vane geometry can capture the stress overshoot phenomenon caused by the destruction of slurry structure, whereas end effects should be considered in the determination of yield stress. The ball measuring system can give reasonable results, and it is applicable for rheological testing of debris flow slurries.展开更多
The concentration of cosmogenic loBe in riverine sediments has been widely used as a proxy for catchment-wide denudation rate (CWDR). One of the key assumptions of this approach is that sediments originating from su...The concentration of cosmogenic loBe in riverine sediments has been widely used as a proxy for catchment-wide denudation rate (CWDR). One of the key assumptions of this approach is that sediments originating from sub-basins with different erosional histories are well mixed. A tragic debris flow occurred in the Seti River watershed, central Nepal, on May 5, 2012. This catastrophic debris flow was triggered by slope failure on the peak of Annapurna IV and resulted in many casualties in the lower Seti Khola. However, it provided an opportunity to test the assumption of equal mixing of sediments in an understudied rapidly eroding watershed. This study documents the CWDR of ^10Be to evaluate the extent of the influence of episodic erosional processes such as debris flow on the spatio-temporal redistribution of loBe concentrations. Our data show that the debris flow caused little change in CWDR across the debris flow event. In addition to isotopic measurement, we calculated denudation rates by using the modeled concentrations in pre- and post-landslide sediments based on the local ^10Be production rate. The modeled result showed little change across the event, indicating that the debris flow in May 2012 played a minor role in sediment evacuation, despite the rapid erosion in the catchment. Our study concludes that although the 2012 event caused many casualties and severe damage, it was a low-magnitude, high frequency event.展开更多
Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based...Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based on the N-S equations in a mesh frame.The proposed model tracks the outline of the floating boom in motion by using the fractional area/volume obstacle representation technique.The boom motion is then simulated by the technique of general moving object.The simulated results of the rigid oil boom motions are validated against the experimental results.Then,the failure mechanism of the boom is investigated through numerical experiments.Based on the numerical results,the effects of boom parameters and dynamic factors on the oil containment performance are also assessed.展开更多
基金Project (50774095) supported by the National Natural Science Foundation of ChinaProject (200449) supported by China National Outstanding Doctoral Dissertations Special Funds
文摘By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock under different loading stresses were obtained. By comparing with the creep rule of dry rock in the same location, the creep rule of deep saturated rock was analyzed. Based on the united rheological mechanical model, the rheological model of deep saturated rock was recognized, and the parameters of the model were determined. The results show that the creep curves are very smooth under low stress, but the phenomena of wave and catastrophe turn up under high stress, and the bearing capacity of rock is weakening over time. The rheological properties of saturated and dry rocks are very different under tlie condition of deep high stress, especially when unloading, degradation and damage of rock quality is more serious, and the effect of water cannot be neglected. The H--HIN--NJS model (Schofield-Scott-Blair model) was selected to represent the rheology rule of deep saturated rock, and the fitting curves of model agree well with the experiment data, so the selected model is reasonable.
基金the support from Sichuan Provincial Department of Transportation and Communicationsthe National Basic Research Program of China (Grant No.2011CB013506)the Research Grants Council of the Hong Kong SAR (Grant No.622210)
文摘A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.
基金supported by the Key Program of National Natural Science Found of China(Grant No.41030742)the Grand Program of National Natural Science Found of China(Grant No.41190084)
文摘Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Watershed on Sept. 4, 2007, July 25, 2010 and Sept. 4, 2010, blocked Parlung Zangbo River and produced dammed lakes, whose outburst flow made 50 m high terrace collapse at the opposite bank due to intense scouring on the foot of the terrace. As a result, the traffic was interrupted for 16 days in 2010 because that 900 m highway base was destructed and 430 m ruined. These debris flows were initiated by the glacial melting which was induced by continuous higher temperature and the following intensive rainfall, and expanded by moraines along channels and then blocked Parlung Zangbo. At the outlet of watershed,the density, velocity and peak discharge of debris flow was 2.06 t/m3, 12.7 m/s and 3334 m3/s, respectively. When the discharge at the outlet and the deposition volume into river exceeds 2125 m3/s and 126×103 m3, respectively, debris flow will completely blocked Parlung Zangbo. Moreover,if the shear stress of river flow on the foot of terrace and the inclination angel of terrace overruns 0. 377 N/m2 and 26°, respectively, the unconsolidated terrace will be eroded by outburst flow and collapse. It was strongly recommended for mitigation that identify and evade disastrous debris flows, reduce the junction angel of channels between river and watershed, build protecting wall for highway base and keep appropriate distance between highway and the edge of unconsolidated terrace.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
基金funded by the National Program on Key Basic Research Project (973 Program) (Grant No. 2008CB425802)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-YW-302)the National Natural Science Foundation of China (Grant No. 40701014)
文摘A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfall.It was found that the characteristic rainfall corresponds to the daily rainfall of 90% cumulative probability by analyzing the basin's daily rainfall histogram.The result provides a simple and useful method for estimating a debris-flow warning rainfall threshold from the daily rainfall distribution.It was applied to estimate the debris-flow warning rainfall threshold for the Subaohe basin,a watershed in the 2008 Wenchuan earthquake zone with many physical characteristics similar to those of the Jiangjia basin.
基金supported by the National Natural Science Foundation of China(Grant No.40871024 & 40971014)
文摘Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in history,and have caused destructive disaster to local residents at the mouth of ravine and blocked Brahmaputra.The huge altitude difference and the steep slope of the Zelongnong Ravine provide predominant energy conditions for the debris-flow.The drainage basin is located in the fast uplifted area,where the complicated geologic structure,the cracked rock,and the frequent earthquake make the rocks experience strong weathering,thus plenty of granular materials are available for the formation of debris-flows.Although this region is located in the rain shadow area,the precipitation is concentrated and most is with high intensity.Also,the strong glacier activity provides water source for debris-flow.According to literature reviews,most debris-flows in the ravine are induced by rainstorms,and their scales are relatively small.However,when the melted water is overlaid,the large scale debris-flows may occur.Parametric calculation such as the flow velocity and the runoff is conducted according to the monitoring data.The result shows that large debris-flows can be aroused when the rainstorm and the melted water are combined well,but the possibility of blocking off Brahmaputra is rare.The occurrence of the super debris-flows is closely related to the intense glacier activity(e.g.,glaciersurge).They often result in destructive disasters and are hard to be prevented and cured by engineering measures,due to the oversized scales.The hazard mitigation measures such as monitoring and prediction are proposed.
基金National BasicResearch Program of China(also called 973program)(project No.2003CB415105-6)National University of Singapore(NUS grantnumber R-109-000-034-112).
文摘The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen’s test. In both the upper reaches (Xiaohekou) and the lower reaches (Xiaohuangguayuan), the sediment fluxes showed a significant increase from 1970 to 2001, despite the fact that the water discharge did not change significantly during the period and numerous reservoir constructions which contribute to the trap of sediment. This can be attributed to the intensification of human activities, especially the activities related to land surface disturbances such as deforestation and afforestation, expansion of agriculture land, and road constructions. This increase is more significant in the lower reaches of the river observed at the place of Xiaohuangguayuan due to the dry-hot climate. The profound increase in sediment flux has significant implications for effective management of the sedimentation problems of the on-going Three Gorges Reservoir.
基金supported by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS KAKENHI) (Grant Nos.80378918,26292077)
文摘Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.
基金supported by the Open Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences (Grant No. 201503)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)+1 种基金the National Natural Science Foundation of China (Grant No. 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1426)
文摘Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.
基金support from the authorities of the National Natural Science Foundation of China (Grant No. 41171016)Sichuan Province Science and technology support program (Grant No. 2014SZ0163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1309 and SKHL1418)
文摘Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.
基金financially supported by the Key Research Program of the Chinese Academy of Sciences (CAS) (Grant No. KZZD-EW-05-01)the Youth Talent Team Program of Institute of Mountain Hazards and Environment, CAS (Grant No. SDSQB-2013-01)the National Natural Science Foundation of China (Grant No. 41201011)
文摘Soil samples with clay content ranging from 15% to 31%, were taken from three debris flow gullies in Southwest China. Three debris flow slurry samples were prepared and tested with four measuring systems of an Anton Paar Physica MCR301 rheometer, including the concentric cylinder system,the parallel-plate system, the vane geometry, and the ball measuring system. All systems were smoothwalled. Flow curves were plotted and yield stress was determined using the Herschel-Bulkley model,showing differences among the different systems.Flow curves from the concentric cylinder and parallelplate systems involved two distinct regions, the low shear and the high shear regions. Yield stresses determined by data fitting in the low shear region were significantly lower than the values from the inclined channel test which is a practical method for determining yield stress. Flow curves in the high shear region are close to those from the vane geometry and the ball measuring system. The fitted values of yield stress are comparable to the values from the inclined channel test. The differences are caused by wall-slip effects in the low shear region.Vane geometry can capture the stress overshoot phenomenon caused by the destruction of slurry structure, whereas end effects should be considered in the determination of yield stress. The ball measuring system can give reasonable results, and it is applicable for rheological testing of debris flow slurries.
基金supported by the College of Education,Korea University Grant in 2016
文摘The concentration of cosmogenic loBe in riverine sediments has been widely used as a proxy for catchment-wide denudation rate (CWDR). One of the key assumptions of this approach is that sediments originating from sub-basins with different erosional histories are well mixed. A tragic debris flow occurred in the Seti River watershed, central Nepal, on May 5, 2012. This catastrophic debris flow was triggered by slope failure on the peak of Annapurna IV and resulted in many casualties in the lower Seti Khola. However, it provided an opportunity to test the assumption of equal mixing of sediments in an understudied rapidly eroding watershed. This study documents the CWDR of ^10Be to evaluate the extent of the influence of episodic erosional processes such as debris flow on the spatio-temporal redistribution of loBe concentrations. Our data show that the debris flow caused little change in CWDR across the debris flow event. In addition to isotopic measurement, we calculated denudation rates by using the modeled concentrations in pre- and post-landslide sediments based on the local ^10Be production rate. The modeled result showed little change across the event, indicating that the debris flow in May 2012 played a minor role in sediment evacuation, despite the rapid erosion in the catchment. Our study concludes that although the 2012 event caused many casualties and severe damage, it was a low-magnitude, high frequency event.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the Program of International S&T Cooperation(No.S2015ZR1030)
文摘Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based on the N-S equations in a mesh frame.The proposed model tracks the outline of the floating boom in motion by using the fractional area/volume obstacle representation technique.The boom motion is then simulated by the technique of general moving object.The simulated results of the rigid oil boom motions are validated against the experimental results.Then,the failure mechanism of the boom is investigated through numerical experiments.Based on the numerical results,the effects of boom parameters and dynamic factors on the oil containment performance are also assessed.