The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh...The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.展开更多
We get an explicit lower bound for the radius of a Bergman ball contained in the Dirichlet fundamental polyhedron of a torsion free discrete group G PU(n,1)acting on complex hyperbolic space.As an application,we als...We get an explicit lower bound for the radius of a Bergman ball contained in the Dirichlet fundamental polyhedron of a torsion free discrete group G PU(n,1)acting on complex hyperbolic space.As an application,we also give a lower bound for the volumes of complex hyperbolic n-manifolds.展开更多
基金the financial support provided by the National Natural Science Foundation of China (No.51074156)the Natural Science Foundation of China for InnovativeResearch Group (No. 50921002)+1 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2010002)the Fundamental Research Funds for the Central Universities (No. 2010ZDP01A06)
文摘The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.
基金supported by National Natural Science Foundation of China(Grant Nos.10671059 and 11201134)Young Teachers Support Program of Hunan University(Grant No.531107040021)
文摘We get an explicit lower bound for the radius of a Bergman ball contained in the Dirichlet fundamental polyhedron of a torsion free discrete group G PU(n,1)acting on complex hyperbolic space.As an application,we also give a lower bound for the volumes of complex hyperbolic n-manifolds.