In this paper,a two-level search method for searching transfer opportunities between interplanetary halo orbits,exploiting the invariant manifolds of the restricted three-body problem,is proposed.In the method,the fir...In this paper,a two-level search method for searching transfer opportunities between interplanetary halo orbits,exploiting the invariant manifolds of the restricted three-body problem,is proposed.In the method,the first-level search procedure is performed under the conditions of the initial time of escape manifold trajectory of the Sun-Earth halo orbit and the terminal time of capture manifold of the target planet fixed,by solving the optimal two-impulsive heliocentric trajectory to connect the two manifold trajectories.The contour map,helpful to the understanding of the global characteristics of the transfer opportunities,taking the initial time of escape manifold and the terminal time of capture manifold as variables,the optimal velocity increment of the first-level search as objective function,is used for the second-level search.Finally,taking the Earth-Mars and Earth-Venus halo to halo transfers for example,the transfer opportunities in 2015-2017 are searched.The results show the effectiveness of the proposed method and reveal the property of quasi-period of transfer opportunities between interplanetary halo orbits.展开更多
Efficient resource scheduling and allocation in radiological examination process (REP) execution is a key requirement to improve patient throughput and radiological resource utilization and to manage unexpected even...Efficient resource scheduling and allocation in radiological examination process (REP) execution is a key requirement to improve patient throughput and radiological resource utilization and to manage unexpected events that occur when resource scheduling and allocation decisions change due to clinical needs. In this paper, a Tabu search based approach is presented to solve the resource scheduling and allocation problems in REP execution. The primary objective of the approach is to minimize a weighted sum of average examination flow time, average idle time of the resources, and delays. Unexpected events, i.e., emergent or absent examinations, are also considered. For certain parameter combinations, the optimal solution of radielogical resource scheduling and allocation is found, while considering the limitations such as routing and resource constraints. Simulations in the application case are performed. Results show that the proposed approach makes efficient use ofradiological resource capacity and improves the patient throughput in REP execution.展开更多
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2012CB720000)the National Natural Science Foundation of China (Grant Nos. 10832004 and 11102020)
文摘In this paper,a two-level search method for searching transfer opportunities between interplanetary halo orbits,exploiting the invariant manifolds of the restricted three-body problem,is proposed.In the method,the first-level search procedure is performed under the conditions of the initial time of escape manifold trajectory of the Sun-Earth halo orbit and the terminal time of capture manifold of the target planet fixed,by solving the optimal two-impulsive heliocentric trajectory to connect the two manifold trajectories.The contour map,helpful to the understanding of the global characteristics of the transfer opportunities,taking the initial time of escape manifold and the terminal time of capture manifold as variables,the optimal velocity increment of the first-level search as objective function,is used for the second-level search.Finally,taking the Earth-Mars and Earth-Venus halo to halo transfers for example,the transfer opportunities in 2015-2017 are searched.The results show the effectiveness of the proposed method and reveal the property of quasi-period of transfer opportunities between interplanetary halo orbits.
基金Project supported by the National Natural Science Foundation of China(No.61562088)
文摘Efficient resource scheduling and allocation in radiological examination process (REP) execution is a key requirement to improve patient throughput and radiological resource utilization and to manage unexpected events that occur when resource scheduling and allocation decisions change due to clinical needs. In this paper, a Tabu search based approach is presented to solve the resource scheduling and allocation problems in REP execution. The primary objective of the approach is to minimize a weighted sum of average examination flow time, average idle time of the resources, and delays. Unexpected events, i.e., emergent or absent examinations, are also considered. For certain parameter combinations, the optimal solution of radielogical resource scheduling and allocation is found, while considering the limitations such as routing and resource constraints. Simulations in the application case are performed. Results show that the proposed approach makes efficient use ofradiological resource capacity and improves the patient throughput in REP execution.