WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr...WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.展开更多
This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to...This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.展开更多
Chaos is a similar and random process which is very sensitive to initial value in deterministic system. It is a performance of nonlinear dynamical system with built-in randomness. Combined with the advantages and disa...Chaos is a similar and random process which is very sensitive to initial value in deterministic system. It is a performance of nonlinear dynamical system with built-in randomness. Combined with the advantages and disadvantages of the present chaos encryption model, the paper proposes a chaotic stream cipher model based on chaos theory, which not only overcomes finite precision effect, but also improves the randomness of chaotic system and output sequence. The Sequence cycle theory generated by the algorithm can reach more than 10600 at least, which completely satisfies the actual application requirements of stream cipher system.展开更多
In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on tw...In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on two-lane highway is obtained by applying the linear stability theory. The modified Korteweg-de Vries (KdV) equation near the critical point is derived and the coexisting curves resulted from the modified KdV equation can be described, which shows that the critical point, the coexisting curve and the neutral stability line decrease with increasing the honk effect coe^cient. A wide moving jam can be conceivably described approximately in the unstable region. Numerical simulation is performed to verify the analytic results. The results show that the honk effect could suppress effectively the congested traffic patterns about wide moving jam propagation in lattice model of two-lane traffic flow.展开更多
文摘WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.
基金the Natural Science Foundation of China (No. 50075029)
文摘This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.
文摘Chaos is a similar and random process which is very sensitive to initial value in deterministic system. It is a performance of nonlinear dynamical system with built-in randomness. Combined with the advantages and disadvantages of the present chaos encryption model, the paper proposes a chaotic stream cipher model based on chaos theory, which not only overcomes finite precision effect, but also improves the randomness of chaotic system and output sequence. The Sequence cycle theory generated by the algorithm can reach more than 10600 at least, which completely satisfies the actual application requirements of stream cipher system.
基金Supported by the Key Project of Chinese Ministry of Education under Grant No.211123the Scientific Research Fund of Hunan Provincial Education Department under Grant No.10B072+1 种基金Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science under Grant No.BSQD1010the Fund of Key Construction Academic Subject of Hunan Province
文摘In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on two-lane highway is obtained by applying the linear stability theory. The modified Korteweg-de Vries (KdV) equation near the critical point is derived and the coexisting curves resulted from the modified KdV equation can be described, which shows that the critical point, the coexisting curve and the neutral stability line decrease with increasing the honk effect coe^cient. A wide moving jam can be conceivably described approximately in the unstable region. Numerical simulation is performed to verify the analytic results. The results show that the honk effect could suppress effectively the congested traffic patterns about wide moving jam propagation in lattice model of two-lane traffic flow.