This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in ...This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.展开更多
The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,ind...The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,indicators including direct recovery,waste recycle ratio,and resource efficiency were used to evaluate the metabolism efficiency of the system.The results showed that,the resource efficiency of copper was 97.58%,the direct recovery of copper in smelting,converting,and refining processes was 91.96%,97.13%and 99.47%,respectively.Meanwhile,for producing 1 t of copper,10 kg of arsenic was carried into the system,with the generation of 1.07 kg of arsenic in flotation tailing,8.50 kg of arsenic in arsenic waste residue,and 0.05 kg of arsenic in waste water.The distribution and transformation behaviors of arsenic in the smelting,converting,and refining processes were also analyzed,and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.展开更多
Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in ...Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in multiphase systems. According to the model of macro-scale mass transfer in airlift loop reactors, it was proved that the airlift loop reactor can be regarded as a continuous stirred tank reactor for measuring mass transfer coefficient. The calculated mass transfer coefficient on such a basis is different from the volumetric mass transfer coefficient in the macro-scale model and the difference is discussed. To describe the time delay of the probe response to the change of oxygen concentration in the liquid phase, a model taking into account the time constant of response is es-tablished. Sensitivity analysis shows that this model can be used to measure the volumetric mass transfer coefficient. Applying this model to the measurement of volumetric mass transfer coefficient in the loop reactor, results that co-incide with the turbulence theory in the literate were obtained.展开更多
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m...According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.展开更多
Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent...Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.展开更多
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ...The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.展开更多
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bu...Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.展开更多
In this paper, we consider the following equation ut=(um)xx+(un)x, with the initial condition as Dirac measure. Attention is focused on existence, nonexistence, uniqueness and the asymptotic behavior near (0,0)...In this paper, we consider the following equation ut=(um)xx+(un)x, with the initial condition as Dirac measure. Attention is focused on existence, nonexistence, uniqueness and the asymptotic behavior near (0,0) of solution to the Cauchy's problem. The special feature of this equation lies in nonlinear convection effect, i.e., the equation possesses nonlinear hyperbolic character as well as degenerate parabolic one. The situation leads to a more sophisticated mathematical analysis. To our knowledge, the solvability of singular solution to the equation has not been concluded yet. Here based on the previous works by the authors, we show that there exists a critical number n0=m+2 such that a unique source-type solution to this equation exists if 0≤n展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.
基金financial supports from the National Key R&D Program of China(No.2019YFC1907400)the National Natural Science Foundation of China(Nos.51904351,51620105013)。
文摘The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,indicators including direct recovery,waste recycle ratio,and resource efficiency were used to evaluate the metabolism efficiency of the system.The results showed that,the resource efficiency of copper was 97.58%,the direct recovery of copper in smelting,converting,and refining processes was 91.96%,97.13%and 99.47%,respectively.Meanwhile,for producing 1 t of copper,10 kg of arsenic was carried into the system,with the generation of 1.07 kg of arsenic in flotation tailing,8.50 kg of arsenic in arsenic waste residue,and 0.05 kg of arsenic in waste water.The distribution and transformation behaviors of arsenic in the smelting,converting,and refining processes were also analyzed,and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.
基金Supported by the Specialized Research Fund for the Program of Higher Education (No.20050003030) and byTsinghua-Zhongda Postdoctoral Fellowship Program (No.20283600131).
文摘Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in multiphase systems. According to the model of macro-scale mass transfer in airlift loop reactors, it was proved that the airlift loop reactor can be regarded as a continuous stirred tank reactor for measuring mass transfer coefficient. The calculated mass transfer coefficient on such a basis is different from the volumetric mass transfer coefficient in the macro-scale model and the difference is discussed. To describe the time delay of the probe response to the change of oxygen concentration in the liquid phase, a model taking into account the time constant of response is es-tablished. Sensitivity analysis shows that this model can be used to measure the volumetric mass transfer coefficient. Applying this model to the measurement of volumetric mass transfer coefficient in the loop reactor, results that co-incide with the turbulence theory in the literate were obtained.
基金Projects(51139001,51179066,51079046,50909041) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0359) supported by the Program for New Century Excellent Talents in UniversityProjects(2009586012,2009586912,2010585212)supported by the Special Fund of State Key Laboratory of China
文摘According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.
文摘Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.
基金Project(FRF-AS-10-0058) supported by the Fundamental Research Funds for the Central Universities,China
文摘The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.
基金Supported by the National Natural Science Foundation of China(51406031)Jilin City Science and Technology Plan Project(201464055)Jilin Province Education Department Science Research Project(2015-243)
文摘Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.
基金National Natural Science Foundation of China (Grant Nos. 10671103 and 11001142)
文摘In this paper, we consider the following equation ut=(um)xx+(un)x, with the initial condition as Dirac measure. Attention is focused on existence, nonexistence, uniqueness and the asymptotic behavior near (0,0) of solution to the Cauchy's problem. The special feature of this equation lies in nonlinear convection effect, i.e., the equation possesses nonlinear hyperbolic character as well as degenerate parabolic one. The situation leads to a more sophisticated mathematical analysis. To our knowledge, the solvability of singular solution to the equation has not been concluded yet. Here based on the previous works by the authors, we show that there exists a critical number n0=m+2 such that a unique source-type solution to this equation exists if 0≤n