The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ran...The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ranging from 0.001 to 10 s -1 .The steady flow stress increased with increasing the strain rate or decreasing the deformation temperature,which can be described by a hyperbolic-sine constitutive equation with the deformation activation energy of 150.25 kJ/mol.The tendency of dynamic recrystallization enhanced at high deforming temperatures and low strain rates,which corresponded to low Z values.With decreasing Z value,the main softening mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization, correspondingly,the subgrain size increased and the dislocation density decreased.展开更多
In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid ...In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid waste.Secondly,the integrated dis-posal and transport system for industry solid waste was introduced,in particular,the oper-ating principles,equipment set-up,key technology and technical parameters.Next,thispaper illustrated the application of this integrated system.Such as it can transport coalsludge with sufficiently high solids content(about 72%~77%)and high apparent viscosity(about 1 000~3 000 Pa.s)directly by pipeline having no use for water and addition agent.Generally,the transport distance is about 1 000 m.This system has been successfullyused in innocuous disposition and efficient utilization of other industrial byproducts or solidwastes,such as city sludge and paper making waste.The integrated system causes nopollution to the environment for its complete seal and realizes protecting the environment,conserving the energy,promoting the development of cycling economic.Finally,the paperdiscussed the research works that were needed for studying such pipeline transport sys-tem and narrates the relevant condition and application status.展开更多
The steady and dynamic rheological behaviors of precipitated calcium carbonate (PCC) suspension in polyethylene glycol (PEG) were investigated on a TA AR2000ex rheometer. Under steady shear consistency index K and flo...The steady and dynamic rheological behaviors of precipitated calcium carbonate (PCC) suspension in polyethylene glycol (PEG) were investigated on a TA AR2000ex rheometer. Under steady shear consistency index K and flow exponent N of suspensions with different volume fractions were determined. The shear-thinning and the discontinuous shear-thickening behavior were observed at different constant frequencies from 10 to 100 rad/s. The relationship between the complex viscosity and the constant frequency were determined. As the volume fraction increases,flow exponent N shows a rapid increase,and it increases dramatically when the discontinuous shear-thickening takes place,while consistency index K decreases. Dynamic oscillatory shear experiments were conducted at constant strain amplitude and constant frequency,respectively. For the frequency sweep,the system shows viscous property in entire range of the frequency investigated,and the complex viscosity shows discontinuous jump at a critical frequency of 10 rad/s. For the strain sweep,on the other hand,at low strain the elastic modulus is strongly dependent on the strain,and the viscous modulus is independent of the strain. But at the critical strain point both of the moduli show an abrupt jump and the system transits from elastic to viscous at a strain of 0.1.展开更多
To disclose the grain crushing effects on the weathered granular soil rheological behavior,a series of rheological tests (odometer compression and triaxial shearing) were carried out.At the same time,the sieving analy...To disclose the grain crushing effects on the weathered granular soil rheological behavior,a series of rheological tests (odometer compression and triaxial shearing) were carried out.At the same time,the sieving analysis tests of these specimens were also executed before and after tests,and the grain crushing degree,Br and n5,were collectively adopted to estimate the grain crushing.The grain crushing degree depends on the stress path,stress level,and load time,especially,the longer load time and more intensive gradient shearing path will increase the grain crushing quantity.The Hardin crushing degrees Br are 0.191,0.118 and 0.085 in the ordinary compression,rheological compression and triaxial rheological shearing,respectively;The grain crushing degrees n5 are 1.9,1.4 and 1.32,respectively.The strain softening phase indicates the grain crushing and diffusive collapse,and the strain hardening phase indicates the rearrangement of these crushed grains and formation of new bearing soil skeleton.The rheological deformation of granular soil can be attributed to the coarse grain crushing and the filling external porosity with crushed fragments.展开更多
The thermodynamic characterization as well as the rheological characterization of the A201 alloy were conducted.Thermodynamic simulations (CALPHAD method) and calorimetric experiments were performed to determine the s...The thermodynamic characterization as well as the rheological characterization of the A201 alloy were conducted.Thermodynamic simulations (CALPHAD method) and calorimetric experiments were performed to determine the solidus and liquidus temperatures, the melting range and the sensitivity of the solid fraction at the thixoforming temperatures.The rheology of aluminium alloy A201 was examined using a high temperature Searle rheometer.The flow behaviour was analyzed with concentric cylinders of graphite to avoid chemical interactions with the liquid or semi-solid aluminium.The rotational body was grooved to prevent a phenomenon called wall slippage.Continuous cooling experiment was used to observe the shear rate effects on the flow behaviour.It can be seen that the viscosity level decreases at higher shear rates.Shear rate jump experiment was carried out to evaluate the steady state flow curve within the analyzed shear rate range from 60 s-1 to 260 s-1.It is found that the power law indexes are-1.35 and-1.49 for 35% and 45% solid fraction, respectively.Finally, some mechanical property data of as-cast and as-thixoformed A201 alloy are included indicating the potential for high strength applications.展开更多
This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shea...This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.展开更多
Adding the polyamine inhibitor into drilling fluid can effectively strengthen the rejection capability and improve the rheological behavior of drilling fluid system. According to the analysis of the comparison of the ...Adding the polyamine inhibitor into drilling fluid can effectively strengthen the rejection capability and improve the rheological behavior of drilling fluid system. According to the analysis of the comparison of the physiochemical properties of the polyamine inhibitor, a polyamine polymer drilling fluid system was established by means of adding UAE polyamine into traditional polymer drilling fluid. Conventional properties and environmental influence of this system have been evaluated in this paper. The result indicates that the polymer drilling fluid system optimized by polyamine shows a high-performance, such as excellent rejection performance, better rheological and filtration properties, better environmental protection functions. Thus it can be used in high water-sensitive, high temperature, high pressure or vulnerable formation drilling operations.展开更多
In 2014, China experienced the worst outbreak of dengue fever in the last decade with over 40,000 dengue cases including six deaths by the end of October. As one of the "neglected" tropical diseases, dengue is affec...In 2014, China experienced the worst outbreak of dengue fever in the last decade with over 40,000 dengue cases including six deaths by the end of October. As one of the "neglected" tropical diseases, dengue is affecting substantially increasing number of people and proportion of global population due to factors including globalization, human settlement, and possibly climate change. Here, the authors summarized the most recent data about dengue outbreaks in China and reviewed the global trend of dengue epidemiology. Future directions for dengue surveillance, control and prevention are also introduced.展开更多
Biological experiments and epidemiological evidence indicate that variations in environment have important effect on the occurrence and transmission of epidemic influenza.It is therefore important to understand the ch...Biological experiments and epidemiological evidence indicate that variations in environment have important effect on the occurrence and transmission of epidemic influenza.It is therefore important to understand the characteristic patterns of transmission for prevention of disease and reduction of disease burden.Based on case records,we analyzed the environmental characteristics including climate variables in Changsha,and then constructed a meteorological anomaly susceptive-infective-removal (SIR) model on the basis of the results of influenza A (H1N1) transmission.The results showed that the outbreak of influenza A (H1N1) in Changsha showed significant correlation with meteorological conditions;the spread of influenza was sensitive to meteorological anomalies,and that the outbreak of influenza A (H1N1) in Changsha was influenced by a combination of absolute humidity anomalous weather conditions,contact rates of the influenza patients and changes in population movements.These findings will provide helpful information regarding prevention strategies under different conditions,a fresh understanding of the emergence and re-emergence of influenza outbreaks,and a new perspective on the transmission dynamics of influenza.展开更多
基金Project(2012CB619503)supported by the High-tech Research and Development Program of China
文摘The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ranging from 0.001 to 10 s -1 .The steady flow stress increased with increasing the strain rate or decreasing the deformation temperature,which can be described by a hyperbolic-sine constitutive equation with the deformation activation energy of 150.25 kJ/mol.The tendency of dynamic recrystallization enhanced at high deforming temperatures and low strain rates,which corresponded to low Z values.With decreasing Z value,the main softening mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization, correspondingly,the subgrain size increased and the dislocation density decreased.
基金Science and Technology Corporation Innovation Fund of China(02C26211100499) PH.D Program Fund(20020290011)
文摘In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid waste.Secondly,the integrated dis-posal and transport system for industry solid waste was introduced,in particular,the oper-ating principles,equipment set-up,key technology and technical parameters.Next,thispaper illustrated the application of this integrated system.Such as it can transport coalsludge with sufficiently high solids content(about 72%~77%)and high apparent viscosity(about 1 000~3 000 Pa.s)directly by pipeline having no use for water and addition agent.Generally,the transport distance is about 1 000 m.This system has been successfullyused in innocuous disposition and efficient utilization of other industrial byproducts or solidwastes,such as city sludge and paper making waste.The integrated system causes nopollution to the environment for its complete seal and realizes protecting the environment,conserving the energy,promoting the development of cycling economic.Finally,the paperdiscussed the research works that were needed for studying such pipeline transport sys-tem and narrates the relevant condition and application status.
基金Projects (50774096, 50606017) supported by the National Natural Science Foundation of China
文摘The steady and dynamic rheological behaviors of precipitated calcium carbonate (PCC) suspension in polyethylene glycol (PEG) were investigated on a TA AR2000ex rheometer. Under steady shear consistency index K and flow exponent N of suspensions with different volume fractions were determined. The shear-thinning and the discontinuous shear-thickening behavior were observed at different constant frequencies from 10 to 100 rad/s. The relationship between the complex viscosity and the constant frequency were determined. As the volume fraction increases,flow exponent N shows a rapid increase,and it increases dramatically when the discontinuous shear-thickening takes place,while consistency index K decreases. Dynamic oscillatory shear experiments were conducted at constant strain amplitude and constant frequency,respectively. For the frequency sweep,the system shows viscous property in entire range of the frequency investigated,and the complex viscosity shows discontinuous jump at a critical frequency of 10 rad/s. For the strain sweep,on the other hand,at low strain the elastic modulus is strongly dependent on the strain,and the viscous modulus is independent of the strain. But at the critical strain point both of the moduli show an abrupt jump and the system transits from elastic to viscous at a strain of 0.1.
基金Project(50908233) supported by the National Natural Science Foundation of ChinaProject(200413) supported by Communication Science and Technology Fund of Hunan Province,China
文摘To disclose the grain crushing effects on the weathered granular soil rheological behavior,a series of rheological tests (odometer compression and triaxial shearing) were carried out.At the same time,the sieving analysis tests of these specimens were also executed before and after tests,and the grain crushing degree,Br and n5,were collectively adopted to estimate the grain crushing.The grain crushing degree depends on the stress path,stress level,and load time,especially,the longer load time and more intensive gradient shearing path will increase the grain crushing quantity.The Hardin crushing degrees Br are 0.191,0.118 and 0.085 in the ordinary compression,rheological compression and triaxial rheological shearing,respectively;The grain crushing degrees n5 are 1.9,1.4 and 1.32,respectively.The strain softening phase indicates the grain crushing and diffusive collapse,and the strain hardening phase indicates the rearrangement of these crushed grains and formation of new bearing soil skeleton.The rheological deformation of granular soil can be attributed to the coarse grain crushing and the filling external porosity with crushed fragments.
基金the "Ministerio de Ciencia e Innovación" and to the "Fondos FEDER",project "Integrauto" PSE-370000-2008-03the Basque Government,project "ETORTEK, Manufacturing 0.0 II",for their financial support
文摘The thermodynamic characterization as well as the rheological characterization of the A201 alloy were conducted.Thermodynamic simulations (CALPHAD method) and calorimetric experiments were performed to determine the solidus and liquidus temperatures, the melting range and the sensitivity of the solid fraction at the thixoforming temperatures.The rheology of aluminium alloy A201 was examined using a high temperature Searle rheometer.The flow behaviour was analyzed with concentric cylinders of graphite to avoid chemical interactions with the liquid or semi-solid aluminium.The rotational body was grooved to prevent a phenomenon called wall slippage.Continuous cooling experiment was used to observe the shear rate effects on the flow behaviour.It can be seen that the viscosity level decreases at higher shear rates.Shear rate jump experiment was carried out to evaluate the steady state flow curve within the analyzed shear rate range from 60 s-1 to 260 s-1.It is found that the power law indexes are-1.35 and-1.49 for 35% and 45% solid fraction, respectively.Finally, some mechanical property data of as-cast and as-thixoformed A201 alloy are included indicating the potential for high strength applications.
基金financial support and providing research facilities used in this work
文摘This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.
文摘Adding the polyamine inhibitor into drilling fluid can effectively strengthen the rejection capability and improve the rheological behavior of drilling fluid system. According to the analysis of the comparison of the physiochemical properties of the polyamine inhibitor, a polyamine polymer drilling fluid system was established by means of adding UAE polyamine into traditional polymer drilling fluid. Conventional properties and environmental influence of this system have been evaluated in this paper. The result indicates that the polymer drilling fluid system optimized by polyamine shows a high-performance, such as excellent rejection performance, better rheological and filtration properties, better environmental protection functions. Thus it can be used in high water-sensitive, high temperature, high pressure or vulnerable formation drilling operations.
文摘In 2014, China experienced the worst outbreak of dengue fever in the last decade with over 40,000 dengue cases including six deaths by the end of October. As one of the "neglected" tropical diseases, dengue is affecting substantially increasing number of people and proportion of global population due to factors including globalization, human settlement, and possibly climate change. Here, the authors summarized the most recent data about dengue outbreaks in China and reviewed the global trend of dengue epidemiology. Future directions for dengue surveillance, control and prevention are also introduced.
基金supported by Hunan Provincial Natural Science Foundation of China(11JJ3119)the Key Discipline Construction Project in Hunan Province(2008001)the Scientific Research Fund of Hunan Provincial Education Department(11K037)
文摘Biological experiments and epidemiological evidence indicate that variations in environment have important effect on the occurrence and transmission of epidemic influenza.It is therefore important to understand the characteristic patterns of transmission for prevention of disease and reduction of disease burden.Based on case records,we analyzed the environmental characteristics including climate variables in Changsha,and then constructed a meteorological anomaly susceptive-infective-removal (SIR) model on the basis of the results of influenza A (H1N1) transmission.The results showed that the outbreak of influenza A (H1N1) in Changsha showed significant correlation with meteorological conditions;the spread of influenza was sensitive to meteorological anomalies,and that the outbreak of influenza A (H1N1) in Changsha was influenced by a combination of absolute humidity anomalous weather conditions,contact rates of the influenza patients and changes in population movements.These findings will provide helpful information regarding prevention strategies under different conditions,a fresh understanding of the emergence and re-emergence of influenza outbreaks,and a new perspective on the transmission dynamics of influenza.