Web 2.0时代,建模和预测在线信息流行度是信息传播中的重要问题.本文基于社交网络系统信息传播的机制,通过假设和简化,提出了分支过程的概率模型,来描述在线社交网络信息的流行度动力学过程.对典型在线社交网络系统的信息流行度数据和...Web 2.0时代,建模和预测在线信息流行度是信息传播中的重要问题.本文基于社交网络系统信息传播的机制,通过假设和简化,提出了分支过程的概率模型,来描述在线社交网络信息的流行度动力学过程.对典型在线社交网络系统的信息流行度数据和网络结构数据进行了分析,统计结果表明信息流行度衰减遵循幂律分布(幂指数为1.8),微博网络的入度和出度分布也均服从幂律分布(幂指数为1.5).模型仿真结果发现,该模型能够再现真实社交网络数据的若干特征,且信息流行度与网络结构相关.对模型方程进行求解得到理论预测的结果与仿真分析和实际数据结果相符合.展开更多
随着基于位置的社交网络(老师location-based social network,LSBN)的广泛应用,POI(point-of-interest)推荐对用户越来越重要,但签到数据稀疏和用户兴趣动态性等问题均给POI推荐带来困难。为此,提出了一种基于动态异质网络的协同过滤推...随着基于位置的社交网络(老师location-based social network,LSBN)的广泛应用,POI(point-of-interest)推荐对用户越来越重要,但签到数据稀疏和用户兴趣动态性等问题均给POI推荐带来困难。为此,提出了一种基于动态异质网络的协同过滤推荐方法。该方法综合用户位置关系,用户社交关系的好友信息与区域活跃用户信息的同时,还参考兴趣点的分类流行度因素,形成了一种个性化的联合推荐方法。该方法有效缓解了数据稀疏性问题,提高了推荐效果。通过在Foursqure(NYC)数据集和Gowalla数据集上实验表明,算法在精确率与召回率上较其他当前流行算法均有明显提升。展开更多
兴趣点(point-of-interest,POI)推荐是基于位置的社交网络(location-based social networks,LBSN)中一项重要的服务。针对目前推荐算法存在的噪声数据影响推荐质量、用户个性化程度低的问题,提出了一种个性化联合推荐算法。提出了引入PO...兴趣点(point-of-interest,POI)推荐是基于位置的社交网络(location-based social networks,LBSN)中一项重要的服务。针对目前推荐算法存在的噪声数据影响推荐质量、用户个性化程度低的问题,提出了一种个性化联合推荐算法。提出了引入POI的位置因素去除不可能或可能性较小的POI,形成初步候选集;综合考虑POI的类别、流行度及用户的社会行为,增加用户个性化的程度,提高推荐结果的质量。在Foursquare真实签到数据集上的实验证明了提出的联合推荐算法与目前先进的算法相比,准确率提高11%,召回率提高8%。展开更多
文摘随着基于位置的社交网络(老师location-based social network,LSBN)的广泛应用,POI(point-of-interest)推荐对用户越来越重要,但签到数据稀疏和用户兴趣动态性等问题均给POI推荐带来困难。为此,提出了一种基于动态异质网络的协同过滤推荐方法。该方法综合用户位置关系,用户社交关系的好友信息与区域活跃用户信息的同时,还参考兴趣点的分类流行度因素,形成了一种个性化的联合推荐方法。该方法有效缓解了数据稀疏性问题,提高了推荐效果。通过在Foursqure(NYC)数据集和Gowalla数据集上实验表明,算法在精确率与召回率上较其他当前流行算法均有明显提升。
文摘兴趣点(point-of-interest,POI)推荐是基于位置的社交网络(location-based social networks,LBSN)中一项重要的服务。针对目前推荐算法存在的噪声数据影响推荐质量、用户个性化程度低的问题,提出了一种个性化联合推荐算法。提出了引入POI的位置因素去除不可能或可能性较小的POI,形成初步候选集;综合考虑POI的类别、流行度及用户的社会行为,增加用户个性化的程度,提高推荐结果的质量。在Foursquare真实签到数据集上的实验证明了提出的联合推荐算法与目前先进的算法相比,准确率提高11%,召回率提高8%。