-
题名基于相似性传播和流行度降维的混合推荐方法
被引量:1
- 1
-
-
作者
郭娣
赵海燕
侯景德
陈庆奎
曹健
-
机构
上海理工大学光电信息与计算机工程学院上海现代光学系统重点实验室
上海交通大学计算机科学与技术系
-
出处
《小型微型计算机系统》
CSCD
北大核心
2015年第4期707-712,共6页
-
基金
国家自然科学基金项目(61073021
61272438
+7 种基金
60970012
61202376)资助
上海市科委项目(12511502704
11511500102
10DZ1200200)资助
上海交通大学医工交叉项目(YG2011MS38)资助
上海市教委科研创新项目(13ZZ112
13YZ075)资助
-
文摘
社会化标签作为一种重要的显示评分技术,不仅可以描述资源而且可以表征用户的偏好,因此结合社会化标签的推荐正成为互联网推荐引擎中的研究热点.然而大多数推荐算法的研究都面临着数据稀疏性的问题,目前的学者对稀疏性问题的研究主要采用了矩阵填充技术,而没有从对矩阵精简的角度来考虑.文中通过对数据稀疏性问题进行探索和分析,提出一种基于相似性传播和流行度降维的混合推荐方法.该方法首先利用相似性的信息对数据矩阵进行传播和扩展,填充为0的元素.然后利用流行度降维算法对Tag进行评分,对于评分低于某个阈值的可以认为是无效的Tag,从矩阵中删除,从而对数据矩阵进行精简.最后利用这些高质量的数据进行混合推荐.实验结果证明我们的方法具有较好的推荐效果.求解精度.
-
关键词
社会化标签
个性化推荐
稀疏性
相似性传播
流行度降维
混合推荐
-
Keywords
social tagging
personalized recommendation
sparsity
similarity propagation
dimensionreduction based onpopularity
hy-brid recommendation
-
分类号
TP311
[自动化与计算机技术—计算机软件与理论]
-