The tidal limit is the key interface indicating whether water levels will be affected by tidal waves, which is of great significance to navigation safety and regional flood control. Due to limitations in research meth...The tidal limit is the key interface indicating whether water levels will be affected by tidal waves, which is of great significance to navigation safety and regional flood control. Due to limitations in research methods, recent changes in the Yangtze River tidal limit, caused by sea level rise and large-scale engineering projects, urgently need to be studied. In this study,spectrum analysis was undertaken on measured water level data from downstream Yangtze River hydrological stations from2007 to 2016. The bounds of the tidal limit were identified through comparisons between the spectra and red noise curves, and the fluctuation range and characteristics were summarized. The results showed that:(1) During the extremely dry period, when the flow rate at Jiujiang station was about 8440 m3 s-1, the tidal limit was near Jiujiang; whereas during the flood season, when the flow rate at Jiujiang station was about 66700 m3 s-1, the tidal limit was between Zongyang Sluice and Chikou station.(2)From the upper to lower reach, the effect of the Jiujiang flow rate on the tidal limit weakens, while the effect of the Nanjing tidal range increases. The tidal limit fluctuates under similar flow rates and tidal ranges, and the fluctuation range increases with increasing flow rate and decreasing tidal range.(3) With the continued influence of rising sea levels and construction in river basin estuaries, the tidal limit may move further upstream.展开更多
In this study, differentially expressed genes in peripheral blood from patients with Kashin-Beck disease and Keshan disease were compared to further investigate the etiology and pathogenesis of both diseases, which oc...In this study, differentially expressed genes in peripheral blood from patients with Kashin-Beck disease and Keshan disease were compared to further investigate the etiology and pathogenesis of both diseases, which occur in a common endemic area of China. Twenty Kashin-Beck disease patients and 12 healthy controls, and 16 Keshan disease patients and 16 healthy controls, were grouped into four pairs. Patients and controls were selected from common endemic areas for the two diseases. Total RNA was isolated from peripheral blood mononuclear cells from all patients and controls, and gene expression profiles analyzed by oligonucleotide microarrays. Sixteen genes differentially expressed in both Kashin-Beck disease and Keshan disease (versus controls) were identified, and comprised nine genes showing synchronous and seven asynchronous expression. The Comparative Toxicogenomics Database shows that expression and biological function of these genes can be affected by multiple environmental factors, including mycotoxin and selenium content, potential environmental risk factors for the two diseases. Thus, these shared differentially expressed genes may contribute to the distinct organ lesions, caused by common environmental risk factors of Kashin-Beck disease and Keshan disease.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51761135023 & 41476075)the China Geological Survey Nanjing Center Project (Grant No. DD20170246)
文摘The tidal limit is the key interface indicating whether water levels will be affected by tidal waves, which is of great significance to navigation safety and regional flood control. Due to limitations in research methods, recent changes in the Yangtze River tidal limit, caused by sea level rise and large-scale engineering projects, urgently need to be studied. In this study,spectrum analysis was undertaken on measured water level data from downstream Yangtze River hydrological stations from2007 to 2016. The bounds of the tidal limit were identified through comparisons between the spectra and red noise curves, and the fluctuation range and characteristics were summarized. The results showed that:(1) During the extremely dry period, when the flow rate at Jiujiang station was about 8440 m3 s-1, the tidal limit was near Jiujiang; whereas during the flood season, when the flow rate at Jiujiang station was about 66700 m3 s-1, the tidal limit was between Zongyang Sluice and Chikou station.(2)From the upper to lower reach, the effect of the Jiujiang flow rate on the tidal limit weakens, while the effect of the Nanjing tidal range increases. The tidal limit fluctuates under similar flow rates and tidal ranges, and the fluctuation range increases with increasing flow rate and decreasing tidal range.(3) With the continued influence of rising sea levels and construction in river basin estuaries, the tidal limit may move further upstream.
基金supported in part by the Key Scientific and Technological Innovation Special Projects of Shaanxi "13115" of China (2009ZDKG-79)the National Natural Science Foundation of China (30872192, 81273008)
文摘In this study, differentially expressed genes in peripheral blood from patients with Kashin-Beck disease and Keshan disease were compared to further investigate the etiology and pathogenesis of both diseases, which occur in a common endemic area of China. Twenty Kashin-Beck disease patients and 12 healthy controls, and 16 Keshan disease patients and 16 healthy controls, were grouped into four pairs. Patients and controls were selected from common endemic areas for the two diseases. Total RNA was isolated from peripheral blood mononuclear cells from all patients and controls, and gene expression profiles analyzed by oligonucleotide microarrays. Sixteen genes differentially expressed in both Kashin-Beck disease and Keshan disease (versus controls) were identified, and comprised nine genes showing synchronous and seven asynchronous expression. The Comparative Toxicogenomics Database shows that expression and biological function of these genes can be affected by multiple environmental factors, including mycotoxin and selenium content, potential environmental risk factors for the two diseases. Thus, these shared differentially expressed genes may contribute to the distinct organ lesions, caused by common environmental risk factors of Kashin-Beck disease and Keshan disease.