The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the imp...The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.展开更多
The viscous pump,which has a rotor with a helical square channel,is studied experimentally.The non-dimen-sional channel curvature is taken to be about 0.1.Three types of torsion of the channel are made to investigate ...The viscous pump,which has a rotor with a helical square channel,is studied experimentally.The non-dimen-sional channel curvature is taken to be about 0.1.Three types of torsion of the channel are made to investigate the torsion effect on the flow characteristics.We measure the flux through the channel at a constant rotor speed by changing the pressures at the entrance and exit of the pump.We also observe the secondary flow at a cross-section of the channel.Some of the results obtained are shown as follows:The friction factor along the channel to get the same flux is large for large channel torsion at a constant rotation,and becomes small when the favorable rotation of the rotor to the flow is applied.As for the secondary flow in a cross-section,there appear several types of vortex.When there is no rotation,the secondary flow is almost a symmetric two-vortex type for small flux as is the ordinary Dean vortex,but it changes to a four-vortex type when the flux is large.The secondary flow becomes asymmetric as the rotation is applied.We have unsteady flow patterns at large flux and rotation.展开更多
基金supported by the AG Turbo with funds of the Federal Ministry of Eco- nomics and Technology BMWi (FKZ 0327715G)
文摘The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.
文摘The viscous pump,which has a rotor with a helical square channel,is studied experimentally.The non-dimen-sional channel curvature is taken to be about 0.1.Three types of torsion of the channel are made to investigate the torsion effect on the flow characteristics.We measure the flux through the channel at a constant rotor speed by changing the pressures at the entrance and exit of the pump.We also observe the secondary flow at a cross-section of the channel.Some of the results obtained are shown as follows:The friction factor along the channel to get the same flux is large for large channel torsion at a constant rotation,and becomes small when the favorable rotation of the rotor to the flow is applied.As for the secondary flow in a cross-section,there appear several types of vortex.When there is no rotation,the secondary flow is almost a symmetric two-vortex type for small flux as is the ordinary Dean vortex,but it changes to a four-vortex type when the flux is large.The secondary flow becomes asymmetric as the rotation is applied.We have unsteady flow patterns at large flux and rotation.