The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anem...The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anemometer are utilized to measure the flowfields and the velocity profiles of the actuator with different actuating factors. Analytical results show that pairs of counter-rotating vortices are generated near the nozzle. With the development of the synthetic ject, the synthetic jet rapidly spreads in the slot-width direction; while in the slot-length direction, it contracts firstly and slowly spreads. The centerline velocity distribution has a up-down tendency varying with axial distances, and accelerates to its maximum at z/b= 10. The transverse velocity profile across the slot-width is centro-symmetric and self-similar. However, the velocity profiles across the slot-length are saddle-like near the nozzle. It shows that there are two resonance frequencies for the actuator. If the actuator works with the resonance frequency, the vorticity and the velocity of the synthetic jet are higher than those of other frequencies. Compared with the continuous jet, the synthetic jet shows special flow characteristics.展开更多
Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading form...Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.展开更多
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ...The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.展开更多
In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curv...In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed.展开更多
In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship...In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.展开更多
Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of...Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m^3 reached the maximum when the experimental flume slope is 12°.展开更多
The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technolog...The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.展开更多
Based on the engineering application, the angle range of rectifying airflow unit attaching diffusion tank is from 2.5° to 7.5°. In the range of average inlet velocity of 25.0 m/s to 55.0 m/s of diffusion tan...Based on the engineering application, the angle range of rectifying airflow unit attaching diffusion tank is from 2.5° to 7.5°. In the range of average inlet velocity of 25.0 m/s to 55.0 m/s of diffusion tank, numerical simulations of diffusion tank were done. The results of numerical simulations of diffusion tank are shown as follows: ③ In cases of the inlet velocity range from 25.0 m/s to 55.0 m/s, and the angle range of rectifying airflow unit from 2.5° to 7.5°, the average value of pressure losses decreases to the minimum when the angle is 4.5°.② In cases of the inlet velocity of 35.0 m/s, the pressure loss of diffusion tank decreases to the minimum when the angle of rectifying airflow unit is 5.5°. ③ As far as there are different angles of rectifying airflow unit, pressure loss increases gradually along with the addition of inlet velocity.展开更多
The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-re...The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-region of the QS(110.18°E), were collected on 1–4 August 2010. The diurnal tidal currents had their maximum amplitudes between 4.24 and 20.24 m. Their amplitude along the major axis ranged from approximately 0.55 m/s in the middle part of the strait(20.15°N) to 0.84 m/s in the north part of the strait(20.20°N). Both anticlockwise and clockwise tidal current rotations exist in the QS. During the observation period(neap tide), a signifi cant westward residual current occupied almost the entire study section. Two velocity cores of westward current were observed at the northern part and near the deepest trough, although an eastward current appeared in the middle part of the transect. The deepest core was located near 62 m at 20.13°N, with a maximum velocity of-0.34 m/s. The shallower core was located at approximately 16 m at 20.20°N, with a maximum velocity of-0.33 m/s. The estimated total volume of water transported through the QS was-0.16 Sv. This value is an important boundary condition, applicable to numerical models studying coastal ocean circulation in the northwestern South China Sea.展开更多
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surf...This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.展开更多
Solid concentration and particle velocity distributions in the transition section of a Ф 200 mm turbulent fluidized bed (TFB) and a q5200 mrn annulus turbulent fluidized bed (A-TFB) with a Ф 50 mm central standp...Solid concentration and particle velocity distributions in the transition section of a Ф 200 mm turbulent fluidized bed (TFB) and a q5200 mrn annulus turbulent fluidized bed (A-TFB) with a Ф 50 mm central standpipe were measured using a PVBD optical probe. It is concluded that in turbulent regime, the axial distribution of solid concentration in A-TFB was similar to that in TFB, but the former had a shorter transition section. The axial solid concentration distribution, probability density, and power spectral distributions revealed that the standpipe hin- dered the turbulence of gas-solid two-phase flow at a low superficial gas velocity. Consequently, the bottom flow of A-TFB approached the bubbling fluidization pattern. By contrast, the standpipe facilitated the turbulence at a high superficial gas velocity, thus making the bottom flow of A-TFB approach the fast fluidization pattern. Both the particle velocity and solid concentration distribution presented a unimodal distribution in A-TFB and TFB. However, the standpipe at a high gas velocity and in the transition or dilute phase section significantly affected the radial distribution of flow parameters, presenting a bimodal distribution with particle concentration higher near the internal and external walls and in downward flow. Conversely, particle concentration in the middle an- nulus area was lower, and particles flowed upward. This result indicated that the standpipe destroyed the coreannular structure of TFB in the transition and dilute phase sections at a high gas velocity and also improved the particle distribution of TFB. In conclusion, the standpipe improved the fluidization quality and flow homogeneity at high gas velocity and in the transition or dilute phase section, but caused opposite phenomena at low gas velocity and in the dense-phase section.展开更多
The process in the countercurrent humidifier of HAT cycle involves the evaporation of atomized liquids in a turbulent environment. To allow an optimization of such process and provide data for the validation of numeri...The process in the countercurrent humidifier of HAT cycle involves the evaporation of atomized liquids in a turbulent environment. To allow an optimization of such process and provide data for the validation of numerical calculation, the spray evaporation in a countercurrent air stream was studied experimentally. Measurements were taken for different flow parameters, such as airflow rate and liquid flow rate in order to provide reliable data. Phase-Doppler anemometry (PDA) was applied to obtain the spatial change of the droplet size spectrum in the flow field and to measure droplet size-velocity correlations. These local measured profiles of droplet mean velocities, velocity fluctuations and droplet mean diameters were obtained by averaging over all droplet size classes. Moreover, DualPDA signal processing allows accurate determination of the droplet mass flux and local concentration, from which the global evaporation rates could also be determined. These local temperature profiles were measured using the thermocouple and acquired by data acquisition system based on virtual instrument (VI) technology.展开更多
The recent technological developments being applied to Tesla like turbines for converting fluid energy into mechanical (axis) energy often lead to non-frequently used models. Given a disk shaped machine rotating aro...The recent technological developments being applied to Tesla like turbines for converting fluid energy into mechanical (axis) energy often lead to non-frequently used models. Given a disk shaped machine rotating around its own symmetry axis, part of the machine energy is transferred to the fluid itself, pushing it to the disk periphery. This way the farther the exhaust orifice is from the disk outside contour, the larger will be the pressure loss experienced by the system. This work studies the overall energy balance and momentum exchange between fluid and machine. Simple calculation shows that for total pressure gradients above two bar the machines become inefficient for having tangential velocity whose intensity is 50% higher than the intensity of the jet velocity prior to the interaction. For values of the pressure gradient above 5.7 bar, the machine peripheral velocity is equal to the incident jet velocity. In this case it is not possible to deliver power under permanent regime. Finally it is shown that when the feeding pressure of an impulse turbine is enough for more than one stage, then one should use this option to obtain thermal efficiencies similar to those of reaction machines. The jet of fluid to move a Tesla like turbine should enter the unit as close as possible to the direction tangential to the movement, (i.e., normal to the radius at the considered position). This fluid should leave the machine right after interacting with it. Any permanence of the fluid after transferring its momentum to the machine can be extremely prejudicial to the system behavior.展开更多
The paper investigated the performance of a solar chimney, by measuring the chimney air temperature and velocity. A short solar chimney prototype was designed and constructed at Botswana Technology Center. A wind turb...The paper investigated the performance of a solar chimney, by measuring the chimney air temperature and velocity. A short solar chimney prototype was designed and constructed at Botswana Technology Center. A wind turbine was installed to rotate a small DC generator. Temperatures and velocities were measured at different times of the day with thermocouples and hotwire anemometer, respectively. Irradiance was measured with pyranometer. A Delta-T data logger was used to store data at intervals of 30 s. Various graphs depicting the influence of irradiance on temperature, velocity and power have been plotted. Irradiance was found to affect the chimney temperature and subsequently affects chimney air velocity and power produced. Ambient air (wind) velocity was found to have influence on the performance of the solar chimney by increasing chimney air velocity.展开更多
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest...The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.展开更多
The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive...The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive and active components will be developed in this paper in order to control the shaft dynamical amplitude. Different models of hydrodynamic bearings behavior are described. The Reynolds equation resolution may be done by numerical or analytical solutions. A physical analysis of the equation of thin films will identify the most sensitive parameters. The shaft flexibility is taking into account by a modal approach. The fluid-structure coupling process is a simulation, step by step, of the rotor behavior. At each step, the nonlinear fluid force is numerically calculated to obtain the unbalanced shaft response. The results, presented in this paper, concern the dynamic response of unbalanced shaft mounted in adaptive or active bearings: bearings with variable clearance, variable viscosity or variable housing speed. It is shown that the fluid bearing parameters must be adapted to the rotor speed (in particular near or far a critical speed). Then, the paper presents a new kind of active bearing. It works with a mechanical control of the housing position. Several parameters are tested and compared. The robustness of the dynamic control parameters is presented. In conclusion, the bearing adaptation could be very useful to control the shaft dynamic. This limits the effect of the critical speed, in particular by diminishing the shaft amplitude and the dynamic forces transmitted to the housing.展开更多
Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability...Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to yld=0.4, which is further away from the wall than that in incompressible boundary layers. The Reynolds stress profiles exhibit a plateau-like region in the log-law region. The hairpin vortices in the streamwise-wall-normal plane are identified using different velocity decompositions, which are similar to the results of the flow visualization via NPLS technique. And multiple hairpin vortices are found moving at nearly the same velocity in different regions of the boundary layer. In the streamwise-spanwise plane, elongated streaky structures are observed in the log-law region, and disappear in the outer region of the boundary layer, which is contrary to the flow visualization results.展开更多
The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N fact...The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N factor is an empirical factor.In this paper the reliability of this key assumption in the improved eN method is checked by results of transition prediction by using the Parabolized Stability Equations(PSE).Transition locations of an incompressible boundary layer and a hypersonic boundary layer at Mach number 6 on a flat plate are predicted by both the improved eN method and the PSE method.Results from both methods agree fairly well with each other,implying that the transition criterion proposed in the improved eN method is reliable.展开更多
Laminar flame speed is one of the most important intrinsic properties of a combustible mixture. Due to its importance, different methods have been developed to measure the laminar flame speed. This paper reviews the c...Laminar flame speed is one of the most important intrinsic properties of a combustible mixture. Due to its importance, different methods have been developed to measure the laminar flame speed. This paper reviews the constant-volume propagating spherical flame method for laminar flame speed measurement. This method can be used to measure laminar flame speed at high pressures and temperatures which are close to engine-relevant conditions. First, the propagating spherical flame method is introduced and the constant-volume method (CVM) and constant- pressure method (CPM) are compared. Then, main groups using the constant-volume propagating spherical flame method are introduced and large discrepancies in laminar flame speeds measured by different groups for the same mixture are identified. The sources of discrepancies in laminar flame speed measured by CVM are discussed and special attention is devoted to the error encountered in data processing. Different correlations among burned mass fraction, pressure, temperature and flame speed, which are used by different researchers to obtain laminar flame speed, are summarized. The performance of these correlations are examined, based on which recommendations are given. Finally, recommendations for future studies on the con- stant-volume propagating spherical flame method for laminar flame speed measurement are presented.展开更多
文摘The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anemometer are utilized to measure the flowfields and the velocity profiles of the actuator with different actuating factors. Analytical results show that pairs of counter-rotating vortices are generated near the nozzle. With the development of the synthetic ject, the synthetic jet rapidly spreads in the slot-width direction; while in the slot-length direction, it contracts firstly and slowly spreads. The centerline velocity distribution has a up-down tendency varying with axial distances, and accelerates to its maximum at z/b= 10. The transverse velocity profile across the slot-width is centro-symmetric and self-similar. However, the velocity profiles across the slot-length are saddle-like near the nozzle. It shows that there are two resonance frequencies for the actuator. If the actuator works with the resonance frequency, the vorticity and the velocity of the synthetic jet are higher than those of other frequencies. Compared with the continuous jet, the synthetic jet shows special flow characteristics.
基金Project supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,ChinaProject(2012QNZT029) supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2010ybfz088) supported by the Foundation of Excellent Doctoral Dissertation of Central South University,China
文摘Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.
基金Project(FRF-AS-10-0058) supported by the Fundamental Research Funds for the Central Universities,China
文摘The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.
基金financial support by the National Key Programs for Fundamental Research and Development of China(No.2012CB214904)the National Natural Science Foundation of China(Nos.51174203,51134022)
文摘In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed.
基金Sponsored by the National Natrural Science Foundation of China (Grant No.59838310).
文摘In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.
基金supported by the National Key Technology Research and Development Program of China (No. 2014BAL05B01)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (No. KFJ-EW-STS-094)+1 种基金the National Science Foundation of China (No. 41302283)the West Light Foundation of Chinese Academy of Sciences
文摘Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m^3 reached the maximum when the experimental flume slope is 12°.
基金Project(2010CB630800)supported by the National Basic Research Program of ChinaProject(N100307003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.
基金Supported by the National Natural Science Foundation of China (51074073) the Project of Hunan Provincial Science & Technology Department (2010XK6066) the Project of Scientific Research Fund of Hunan Provincial Education Department (10C0675)
文摘Based on the engineering application, the angle range of rectifying airflow unit attaching diffusion tank is from 2.5° to 7.5°. In the range of average inlet velocity of 25.0 m/s to 55.0 m/s of diffusion tank, numerical simulations of diffusion tank were done. The results of numerical simulations of diffusion tank are shown as follows: ③ In cases of the inlet velocity range from 25.0 m/s to 55.0 m/s, and the angle range of rectifying airflow unit from 2.5° to 7.5°, the average value of pressure losses decreases to the minimum when the angle is 4.5°.② In cases of the inlet velocity of 35.0 m/s, the pressure loss of diffusion tank decreases to the minimum when the angle of rectifying airflow unit is 5.5°. ③ As far as there are different angles of rectifying airflow unit, pressure loss increases gradually along with the addition of inlet velocity.
基金Supported by the National Natural Science Foundation for Young Scientists of China(No.40806012)
文摘The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-region of the QS(110.18°E), were collected on 1–4 August 2010. The diurnal tidal currents had their maximum amplitudes between 4.24 and 20.24 m. Their amplitude along the major axis ranged from approximately 0.55 m/s in the middle part of the strait(20.15°N) to 0.84 m/s in the north part of the strait(20.20°N). Both anticlockwise and clockwise tidal current rotations exist in the QS. During the observation period(neap tide), a signifi cant westward residual current occupied almost the entire study section. Two velocity cores of westward current were observed at the northern part and near the deepest trough, although an eastward current appeared in the middle part of the transect. The deepest core was located near 62 m at 20.13°N, with a maximum velocity of-0.34 m/s. The shallower core was located at approximately 16 m at 20.20°N, with a maximum velocity of-0.33 m/s. The estimated total volume of water transported through the QS was-0.16 Sv. This value is an important boundary condition, applicable to numerical models studying coastal ocean circulation in the northwestern South China Sea.
基金supported by the National High Technology Research and Development Program (‘863’ Program) of China under contract No. 2012AA091701the Fundamental Research Fund for the Central University of China under the contract No. 2012212020211
文摘This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.
基金Supported by the National Natural Science Foundation of China(U1361112,U1162125)
文摘Solid concentration and particle velocity distributions in the transition section of a Ф 200 mm turbulent fluidized bed (TFB) and a q5200 mrn annulus turbulent fluidized bed (A-TFB) with a Ф 50 mm central standpipe were measured using a PVBD optical probe. It is concluded that in turbulent regime, the axial distribution of solid concentration in A-TFB was similar to that in TFB, but the former had a shorter transition section. The axial solid concentration distribution, probability density, and power spectral distributions revealed that the standpipe hin- dered the turbulence of gas-solid two-phase flow at a low superficial gas velocity. Consequently, the bottom flow of A-TFB approached the bubbling fluidization pattern. By contrast, the standpipe facilitated the turbulence at a high superficial gas velocity, thus making the bottom flow of A-TFB approach the fast fluidization pattern. Both the particle velocity and solid concentration distribution presented a unimodal distribution in A-TFB and TFB. However, the standpipe at a high gas velocity and in the transition or dilute phase section significantly affected the radial distribution of flow parameters, presenting a bimodal distribution with particle concentration higher near the internal and external walls and in downward flow. Conversely, particle concentration in the middle an- nulus area was lower, and particles flowed upward. This result indicated that the standpipe destroyed the coreannular structure of TFB in the transition and dilute phase sections at a high gas velocity and also improved the particle distribution of TFB. In conclusion, the standpipe improved the fluidization quality and flow homogeneity at high gas velocity and in the transition or dilute phase section, but caused opposite phenomena at low gas velocity and in the dense-phase section.
基金973 Key Develop Projectof the Ministry ofScience and Technology of China (No.G19990 2 2 3 0 3 )
文摘The process in the countercurrent humidifier of HAT cycle involves the evaporation of atomized liquids in a turbulent environment. To allow an optimization of such process and provide data for the validation of numerical calculation, the spray evaporation in a countercurrent air stream was studied experimentally. Measurements were taken for different flow parameters, such as airflow rate and liquid flow rate in order to provide reliable data. Phase-Doppler anemometry (PDA) was applied to obtain the spatial change of the droplet size spectrum in the flow field and to measure droplet size-velocity correlations. These local measured profiles of droplet mean velocities, velocity fluctuations and droplet mean diameters were obtained by averaging over all droplet size classes. Moreover, DualPDA signal processing allows accurate determination of the droplet mass flux and local concentration, from which the global evaporation rates could also be determined. These local temperature profiles were measured using the thermocouple and acquired by data acquisition system based on virtual instrument (VI) technology.
文摘The recent technological developments being applied to Tesla like turbines for converting fluid energy into mechanical (axis) energy often lead to non-frequently used models. Given a disk shaped machine rotating around its own symmetry axis, part of the machine energy is transferred to the fluid itself, pushing it to the disk periphery. This way the farther the exhaust orifice is from the disk outside contour, the larger will be the pressure loss experienced by the system. This work studies the overall energy balance and momentum exchange between fluid and machine. Simple calculation shows that for total pressure gradients above two bar the machines become inefficient for having tangential velocity whose intensity is 50% higher than the intensity of the jet velocity prior to the interaction. For values of the pressure gradient above 5.7 bar, the machine peripheral velocity is equal to the incident jet velocity. In this case it is not possible to deliver power under permanent regime. Finally it is shown that when the feeding pressure of an impulse turbine is enough for more than one stage, then one should use this option to obtain thermal efficiencies similar to those of reaction machines. The jet of fluid to move a Tesla like turbine should enter the unit as close as possible to the direction tangential to the movement, (i.e., normal to the radius at the considered position). This fluid should leave the machine right after interacting with it. Any permanence of the fluid after transferring its momentum to the machine can be extremely prejudicial to the system behavior.
文摘The paper investigated the performance of a solar chimney, by measuring the chimney air temperature and velocity. A short solar chimney prototype was designed and constructed at Botswana Technology Center. A wind turbine was installed to rotate a small DC generator. Temperatures and velocities were measured at different times of the day with thermocouples and hotwire anemometer, respectively. Irradiance was measured with pyranometer. A Delta-T data logger was used to store data at intervals of 30 s. Various graphs depicting the influence of irradiance on temperature, velocity and power have been plotted. Irradiance was found to affect the chimney temperature and subsequently affects chimney air velocity and power produced. Ambient air (wind) velocity was found to have influence on the performance of the solar chimney by increasing chimney air velocity.
基金supported by the Science and Technology Research and Development Plan of Hebei Province, China (12276710D)
文摘The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.
文摘The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive and active components will be developed in this paper in order to control the shaft dynamical amplitude. Different models of hydrodynamic bearings behavior are described. The Reynolds equation resolution may be done by numerical or analytical solutions. A physical analysis of the equation of thin films will identify the most sensitive parameters. The shaft flexibility is taking into account by a modal approach. The fluid-structure coupling process is a simulation, step by step, of the rotor behavior. At each step, the nonlinear fluid force is numerically calculated to obtain the unbalanced shaft response. The results, presented in this paper, concern the dynamic response of unbalanced shaft mounted in adaptive or active bearings: bearings with variable clearance, variable viscosity or variable housing speed. It is shown that the fluid bearing parameters must be adapted to the rotor speed (in particular near or far a critical speed). Then, the paper presents a new kind of active bearing. It works with a mechanical control of the housing position. Several parameters are tested and compared. The robustness of the dynamic control parameters is presented. In conclusion, the bearing adaptation could be very useful to control the shaft dynamic. This limits the effect of the critical speed, in particular by diminishing the shaft amplitude and the dynamic forces transmitted to the housing.
基金supported by the National Basic Research Program of China (Grant No. 2009CB724100)
文摘Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to yld=0.4, which is further away from the wall than that in incompressible boundary layers. The Reynolds stress profiles exhibit a plateau-like region in the log-law region. The hairpin vortices in the streamwise-wall-normal plane are identified using different velocity decompositions, which are similar to the results of the flow visualization via NPLS technique. And multiple hairpin vortices are found moving at nearly the same velocity in different regions of the boundary layer. In the streamwise-spanwise plane, elongated streaky structures are observed in the log-law region, and disappear in the outer region of the boundary layer, which is contrary to the flow visualization results.
基金supported by the National Natural Science Foundation of China (Grant No.11002098)the National Basic Research Program of China (Grant No.2009CB724103)the Specialized Research Fund for the Doctoral Program of Higher Education
文摘The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N factor is an empirical factor.In this paper the reliability of this key assumption in the improved eN method is checked by results of transition prediction by using the Parabolized Stability Equations(PSE).Transition locations of an incompressible boundary layer and a hypersonic boundary layer at Mach number 6 on a flat plate are predicted by both the improved eN method and the PSE method.Results from both methods agree fairly well with each other,implying that the transition criterion proposed in the improved eN method is reliable.
基金supported by the National Natural Science Foundation of China(51322602)
文摘Laminar flame speed is one of the most important intrinsic properties of a combustible mixture. Due to its importance, different methods have been developed to measure the laminar flame speed. This paper reviews the constant-volume propagating spherical flame method for laminar flame speed measurement. This method can be used to measure laminar flame speed at high pressures and temperatures which are close to engine-relevant conditions. First, the propagating spherical flame method is introduced and the constant-volume method (CVM) and constant- pressure method (CPM) are compared. Then, main groups using the constant-volume propagating spherical flame method are introduced and large discrepancies in laminar flame speeds measured by different groups for the same mixture are identified. The sources of discrepancies in laminar flame speed measured by CVM are discussed and special attention is devoted to the error encountered in data processing. Different correlations among burned mass fraction, pressure, temperature and flame speed, which are used by different researchers to obtain laminar flame speed, are summarized. The performance of these correlations are examined, based on which recommendations are given. Finally, recommendations for future studies on the con- stant-volume propagating spherical flame method for laminar flame speed measurement are presented.