Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supers...Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supersonic flow has not been sufficiently clarified. Hence, in order to clarify the interactions between flow and particles, the authors consider the characteristics of particle motion, especially at high temperatures. In the present study, the flow of a gas with a diluted particle load is to be simulated in a conventional converging-diverging supersonic nozzle. The turbulent gas flow in the nozzle is computed with the finite difference and RANS (raynolds averaged navier-stokes simulation) methods. The particle motion is simulated in a Lagrangian manner. In addition, taking into account the light particle loading, a weak coupling method is used. Through this investigation, it is shown that the particle velocity increases monotonically from the nozzle throat to the outlet. And it is shown that particles can be accelerated to higher velocities in helium than in nitrogen, and smaller particles tend to attain higher speed and lower static temperature.展开更多
In this study a mathematical model for two-dimensional pulsatile blood flow through overlapping constricted tapered vessels is presented. In order to establish resemblance to the in vivo conditions, an improved shape ...In this study a mathematical model for two-dimensional pulsatile blood flow through overlapping constricted tapered vessels is presented. In order to establish resemblance to the in vivo conditions, an improved shape of the time-variant overlapping stenosis in the elastic tapered artery subject to pulsatile pressure gradient is considered. Because it contains a suspension of all erythrocytes, the flowing blood is represented by micropolar fluid. By applying a suitable coordinate transformation, tapered cosine-shaped artery turned into non-tapered rectangular and a rigid artery. The governing nonlinear partial differential equations under the imposed realistic boundary conditions are solved using the finite difference method. The effects of vessel tapering on flow characteristics consid- ering their dependencies with time are investigated. The results show that by increasing the taper angle the axial velocity and volumetric flow rate increase and the microrota- tional velocity and resistive impedance reduce. It has been shown that the results are in agreement with similar data from the literature.展开更多
文摘Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supersonic flow has not been sufficiently clarified. Hence, in order to clarify the interactions between flow and particles, the authors consider the characteristics of particle motion, especially at high temperatures. In the present study, the flow of a gas with a diluted particle load is to be simulated in a conventional converging-diverging supersonic nozzle. The turbulent gas flow in the nozzle is computed with the finite difference and RANS (raynolds averaged navier-stokes simulation) methods. The particle motion is simulated in a Lagrangian manner. In addition, taking into account the light particle loading, a weak coupling method is used. Through this investigation, it is shown that the particle velocity increases monotonically from the nozzle throat to the outlet. And it is shown that particles can be accelerated to higher velocities in helium than in nitrogen, and smaller particles tend to attain higher speed and lower static temperature.
文摘In this study a mathematical model for two-dimensional pulsatile blood flow through overlapping constricted tapered vessels is presented. In order to establish resemblance to the in vivo conditions, an improved shape of the time-variant overlapping stenosis in the elastic tapered artery subject to pulsatile pressure gradient is considered. Because it contains a suspension of all erythrocytes, the flowing blood is represented by micropolar fluid. By applying a suitable coordinate transformation, tapered cosine-shaped artery turned into non-tapered rectangular and a rigid artery. The governing nonlinear partial differential equations under the imposed realistic boundary conditions are solved using the finite difference method. The effects of vessel tapering on flow characteristics consid- ering their dependencies with time are investigated. The results show that by increasing the taper angle the axial velocity and volumetric flow rate increase and the microrota- tional velocity and resistive impedance reduce. It has been shown that the results are in agreement with similar data from the literature.