In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by ...The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by an improved intelligent algorithm, GA-SVR, the combination of genetic algorithm(GA) and support vector regression(SVR). The GA-SVR model learns from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA-SVR model, no matter in β phase temperature range or(α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, and the AARE-values are always lower than 0.18%. The solved GA-SVR model accurately tracks the highly-nonlinear flow behaviors of Ti-13 Nb-13 Zr alloy. The stress-strain data expanded by this model are input into finite element solver, and the computation accuracy is improved.展开更多
Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated me...Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated measurement system which exists in the direct measurement on the torque of alternating current electrical dynamometer, copper loss and iron loss are taken as two key factors and a soft-sensing model on the torque of alternating current electrical dynamometer is established using the fuzzy least square support vector machine (FLS-SVM). Then, the FLS-SVM parameters such as penalty factor and kernel parameter are optimized by adaptive genetic algorithm, torque soft-sensing is investigated in the alternating current electrical dynamometer, as well as the energy feedback efficiency and energy consumption during the measurement phase of a gasoline engine loading continual test is obtained. The results show that the minimum soft-sensing error of torque is about 0.0018, and it fluctuates within a range from -0.3 to 0.3 N·m. FLS-SVM soft-sensing method can increase by 1.6% power generation feedback compared with direct measurement, and it can save 500 kJ fuel consumption in the gasoline engine loading continual test. Therefore, the estimation accuracy of the soft measurement model on the torque of alternating current electrical dynamometer including copper loss and iron loss is high and this indirect measurement method can be feasible to reduce production cost of the alternating current electrical dynamometer and energy consumption during the torque measurement phase of a gasoline engine, replacing the direct method of torque measurement.展开更多
A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the ...A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.展开更多
An admissible manifold wavelet kernel is proposed to construct manifold wavelet support vector machine(MWSVM) for stock returns forecasting.The manifold wavelet kernel is obtained by incorporating manifold theory into...An admissible manifold wavelet kernel is proposed to construct manifold wavelet support vector machine(MWSVM) for stock returns forecasting.The manifold wavelet kernel is obtained by incorporating manifold theory into wavelet technique in support vector machine(SVM).Since manifold wavelet function can yield features that describe of the stock time series both at various locations and at varying time granularities,the MWSVM can approximate arbitrary nonlinear functions and forecast stock returns accurately.The applicability and validity of MWSVM for stock returns forecasting is confirmed through experiments on real-world stock data.展开更多
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.
基金Project(cstc2018jcyjAX0459) supported by Chongqing Basic Research and Frontier Exploration Program,ChinaProjects(2019CDQYTM027,2019CDJGFCL003,2018CDPTCG0001-6,2019CDXYCL0031) supported by the Fundamental Research Funds for the Central Universities,China
文摘The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by an improved intelligent algorithm, GA-SVR, the combination of genetic algorithm(GA) and support vector regression(SVR). The GA-SVR model learns from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA-SVR model, no matter in β phase temperature range or(α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, and the AARE-values are always lower than 0.18%. The solved GA-SVR model accurately tracks the highly-nonlinear flow behaviors of Ti-13 Nb-13 Zr alloy. The stress-strain data expanded by this model are input into finite element solver, and the computation accuracy is improved.
基金Project(11772126) supported by the National Natural Science Foundation of China
文摘Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated measurement system which exists in the direct measurement on the torque of alternating current electrical dynamometer, copper loss and iron loss are taken as two key factors and a soft-sensing model on the torque of alternating current electrical dynamometer is established using the fuzzy least square support vector machine (FLS-SVM). Then, the FLS-SVM parameters such as penalty factor and kernel parameter are optimized by adaptive genetic algorithm, torque soft-sensing is investigated in the alternating current electrical dynamometer, as well as the energy feedback efficiency and energy consumption during the measurement phase of a gasoline engine loading continual test is obtained. The results show that the minimum soft-sensing error of torque is about 0.0018, and it fluctuates within a range from -0.3 to 0.3 N·m. FLS-SVM soft-sensing method can increase by 1.6% power generation feedback compared with direct measurement, and it can save 500 kJ fuel consumption in the gasoline engine loading continual test. Therefore, the estimation accuracy of the soft measurement model on the torque of alternating current electrical dynamometer including copper loss and iron loss is high and this indirect measurement method can be feasible to reduce production cost of the alternating current electrical dynamometer and energy consumption during the torque measurement phase of a gasoline engine, replacing the direct method of torque measurement.
基金Supported by the National Natural Science Foundation of China (60672003)
文摘A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.
基金the Hunan Natural Science Foundation(No. 09JJ3129)the Hunan Key Social Science Foundation (No. 09ZDB04)the Hunan Social Science Foundation (No. 08JD28)
文摘An admissible manifold wavelet kernel is proposed to construct manifold wavelet support vector machine(MWSVM) for stock returns forecasting.The manifold wavelet kernel is obtained by incorporating manifold theory into wavelet technique in support vector machine(SVM).Since manifold wavelet function can yield features that describe of the stock time series both at various locations and at varying time granularities,the MWSVM can approximate arbitrary nonlinear functions and forecast stock returns accurately.The applicability and validity of MWSVM for stock returns forecasting is confirmed through experiments on real-world stock data.