In this paper, we to detect encrypted botnet propose a novel method traffic. During the traffic preprocessing stage, the proposed payload extraction method can identify a large amount of encrypted applications traffic...In this paper, we to detect encrypted botnet propose a novel method traffic. During the traffic preprocessing stage, the proposed payload extraction method can identify a large amount of encrypted applications traffic. It can filter out a large amount of non-malicious traffic, greatly in, roving the detection efficiency. A Sequential Probability Ratio Test (SPRT)-based method can find spatialtemporal correlations in suspicious botnet traffic and make an accurate judgment. Experimental resuks show that the false positive and false nega- tive rates can be controlled within a certain range.展开更多
Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data plan...Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data planes introduces new challenges regarding resilient communications between the two. That is, disconnec- tions between switches and their controllers could result in substantial packet loss and performance degradation. This paper addresses this challenge by studying the issue of control traffic protection in SDNs with arbitrary numbers of controllers. Specifically, we propose a control traffic protection scheme that combines both local rerouting and constrained reverse path forwarding protections, through which switches can locally react to fail- ures and redirect the control traffic using standby backup forwarding options. Our goal is then to find a set of primary routes for control traffic, called protected control network, where as many switches as possible can benefit from the proposed protection scheme. We formulate the protected control network problem, prove its NP-hardness, and develop an algorithm that reconciles proteetability and performance (e.g., switch-to-control latency). Through extensive simulations based on real topologies, we show that our approach significantly im- proves protectability of control traffic. The results should help further the process of deploying SDN in real-world networks.展开更多
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2011CB302903the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.YX002001
文摘In this paper, we to detect encrypted botnet propose a novel method traffic. During the traffic preprocessing stage, the proposed payload extraction method can identify a large amount of encrypted applications traffic. It can filter out a large amount of non-malicious traffic, greatly in, roving the detection efficiency. A Sequential Probability Ratio Test (SPRT)-based method can find spatialtemporal correlations in suspicious botnet traffic and make an accurate judgment. Experimental resuks show that the false positive and false nega- tive rates can be controlled within a certain range.
基金supported in part by National High-tech R&D Program of China(863 Program)(Grant Nos.2013AA0133012015AA016101)
文摘Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data planes introduces new challenges regarding resilient communications between the two. That is, disconnec- tions between switches and their controllers could result in substantial packet loss and performance degradation. This paper addresses this challenge by studying the issue of control traffic protection in SDNs with arbitrary numbers of controllers. Specifically, we propose a control traffic protection scheme that combines both local rerouting and constrained reverse path forwarding protections, through which switches can locally react to fail- ures and redirect the control traffic using standby backup forwarding options. Our goal is then to find a set of primary routes for control traffic, called protected control network, where as many switches as possible can benefit from the proposed protection scheme. We formulate the protected control network problem, prove its NP-hardness, and develop an algorithm that reconciles proteetability and performance (e.g., switch-to-control latency). Through extensive simulations based on real topologies, we show that our approach significantly im- proves protectability of control traffic. The results should help further the process of deploying SDN in real-world networks.