The flow field of 3D (three-dimensional) wall-jet is investigated. Jet-blast from airplane is simulated by wall-jet setup using a sonic nozzle at a laboratory scale. Farfield velocity and fluctuation distributions a...The flow field of 3D (three-dimensional) wall-jet is investigated. Jet-blast from airplane is simulated by wall-jet setup using a sonic nozzle at a laboratory scale. Farfield velocity and fluctuation distributions are measured by using X-type hot wire anemometer at four measurement planes. As a result, the flow properties of streamwise component are consistent with data which are obtained in previous researches. The secondary flow is also measured on each measurement plane. Reynolds stresses, v'v' and w' w', are analyzed from the fluctuation of the secondary flow. The law of similarity is observed in the dimensionless distributions of mean velocity and fluctuation. However, the distributions in nearer field (i.e., in the measurement plane at X/D = 100) tend to disobey the similarity law, especially in the cases of fluctuation. It seems that jet-blast is not fully developed by reaching X/D = 100. The experimental results are compared with computational results which are obtained by CFD (computational fluid dynamics) with SST (shear-stress transport) turbulence model. And it is shown that the results by the simulation with SST turbulence model do not follow the similarity law. The present database of the Reynolds stresses is critically important for development of a new turbulence model of RANS (reynolds-averaged navier-atokes) simulations on wall-jet.展开更多
文摘The flow field of 3D (three-dimensional) wall-jet is investigated. Jet-blast from airplane is simulated by wall-jet setup using a sonic nozzle at a laboratory scale. Farfield velocity and fluctuation distributions are measured by using X-type hot wire anemometer at four measurement planes. As a result, the flow properties of streamwise component are consistent with data which are obtained in previous researches. The secondary flow is also measured on each measurement plane. Reynolds stresses, v'v' and w' w', are analyzed from the fluctuation of the secondary flow. The law of similarity is observed in the dimensionless distributions of mean velocity and fluctuation. However, the distributions in nearer field (i.e., in the measurement plane at X/D = 100) tend to disobey the similarity law, especially in the cases of fluctuation. It seems that jet-blast is not fully developed by reaching X/D = 100. The experimental results are compared with computational results which are obtained by CFD (computational fluid dynamics) with SST (shear-stress transport) turbulence model. And it is shown that the results by the simulation with SST turbulence model do not follow the similarity law. The present database of the Reynolds stresses is critically important for development of a new turbulence model of RANS (reynolds-averaged navier-atokes) simulations on wall-jet.