Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies wh...Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability.展开更多
The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are...The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.展开更多
This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient cond...This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient conditions. ICBP is a totally implantable LVAD (left ventricular assist device) with ceramic bearings developed for long term circulatory assistance. FwC uses PI (proportional-integral) control to adjust rotational speed in order to provide blood flow. FwC does not use sensor for feedback, as there is an estimation system to provide blood flow measurement. Control strategy has being studied in a HCS (hybrid cardiovascular simulator) as a tool that allows the physical connection of ICBP during evaluation. In addition, HCS allows changes of some cardiovascular parameters in order to simulate specific heart disease: ejection fraction (10-25%) and heart rate (50-110 bpm). FwC was able to adjust blood flow with steady error less than 2%. Results demonstrated that FwC is adequate to LVAD control irL different left ventricle failure conditions.展开更多
This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss ...This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss and bypass interference control technology, and the reasonable combination of two kinds of technology to design straight bypass joint deployment. On basis of it, we design a new P2P traffic monitoring system. Through the design and implementation of computer network traffic monitoring system based on C/S mode to achieve automatic control, maintenance, and monitor network traffic, which is suitable for the current engineering software to monitor a network application environment. From the network users and network operator' s perspective, monitoring of network traffic is scientific, reasonable that improve network management and it has important research value.展开更多
We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of diff...We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.展开更多
In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory in...In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory integrations,achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code(Version 3).By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes,it is found that stratosphere-to-troposphere transport(STT)fluxes exist in the center of COLs;and in the periphery of the COL center,troposphereto-stratosphere transport(TST)fluxes and STT fluxes are distributed alternately.Net transport fluxes in COLs are from stratosphere to troposphere,and the magnitude is about 10-4 kg m-2 s-1.The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs.By adopting appropriate residence time,the spurious transports are effectively excluded.Finally,the authors compare the results with previous studies,and find that the cross-tropopause fluxes(CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs.COLs play a significant role in local,rapid air mass exchanges,although they may only be responsible for a fraction of the total STE.展开更多
The issue of goodwill impairment has been debated in many countries throughout the world. Adoption of International Financial Reporting Standards (IFRS) introduced fundamental changes in accounting and impairment me...The issue of goodwill impairment has been debated in many countries throughout the world. Adoption of International Financial Reporting Standards (IFRS) introduced fundamental changes in accounting and impairment methods for goodwill. Since global stock markets went into decline in 2008, there has been much debate over the issue of goodwill impairment in the US and European stock exchange markets, especially on how large the write-downs should be. Complexity of International Accounting Standards (IAS) and IFRS focusing on goodwill and goodwill impairment techniques may lead to inconsistent compliance and varying levels of disclosure quality. The aim of this study is to analyze goodwill impairment during and after the recent financial crisis for companies listed on the Borsa Istanbul (BIST) 100 index and to assist the financial statement users in the assessment of disclosure quality under IAS 36, Paragraph 134d. Tools such as: (1) the period over which management has projected cash flows; (2) the growth rate used for cash flow projections; (3) the discount rate(s) applied to projections; and (4) methods employed to determine recoverable amount are analyzed. Insufficient disclosures on these tools are observed. The findings are of interest to researchers examining the implication of IAS 36, regulators, and policy-setters.展开更多
The velocity area method belongs to the group of primary methods for discharge measurement in hydropower plants. The measurements require an appropriate application of measuring devices and carrying out correctly the ...The velocity area method belongs to the group of primary methods for discharge measurement in hydropower plants. The measurements require an appropriate application of measuring devices and carrying out correctly the process of data analyzing including integration technique. The authors present their own experiences gathered during many years of utilizing the current meter method for discharge measurement in many hydropower plants. They have developed the special integration techniques using the progressive numerical algorithms. The techniques differ from the recommendations contained in the relevant international standards. The authors' own software for calculating the discharge from the measured local velocity distribution (obtained using current meters) adopts advanced spline functions, the so-called NURBS (non-uniform rational B-splines). Nowadays, this kind of splines is commonly used in modeling of the complex geometrical shapes because of their smoothness. It is assessed that it represents much better quality of interpolation than the classic spline functions (classic cubic spline technique). Particularly, the better properties of the NURBS splines can be observed for velocity profile area characterized by very strong velocity gradients where boundary layers meet the core regions of the flow (mainstream). In the developed software the boundary layer thickness and exponent of von Karman function is calculated in accordance with the ISO 3354 standard. The software has been successfully used during many performance tests of the hydraulic turbines in Poland for several years. Paper presents the results of flow rate measurements for two different flow systems of Kaplan turbines. First case concerns the application of the current meters in a long circular penstock whereas the second one in short rectangular turbine intake. A comparative analysis of three flow calculation procedures applied for these two cases is presented in the paper-(1) the integration procedure according to the ISO 3354 standard; (2) the integration procedure based on the NS (natural splines); and (3) the integration procedure based on the NURBS. The results obtained using these three procedures for the first case (intake via long circular penstock) were compared with the results of discharge measurements conducted using the pressure-time method.展开更多
An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors ar...An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors are described in comparison with conventional type of rotor-stator, based on theoretical and experimental investigations. The advantages are as follows: (1) The pump is inherently designed as smaller sized and at lower rotational speed. (2) A stable head-characteristic curve for flow rate with negative slope appears. (3) As the rear rotor rotational speed is varied as independent control of front rotor, the wider range of high performance operation is obtained by rear rotor speed control in addition to front rotor speed control. The disadvantages are as follows: (1) The structure of double shaft system becomes complex. (2) The pump performance is inferior at over flow rate as the rear rotor loading is weakened. (3) The blade rows interaction from rear rotor to front rotor more strongly appears. Then the rear rotor design is a key to achieve higher pump performance. Some methods to overcome these disadvantages will be discussed in more details toward wider usage of contra-rotating axial flow pump in various industrial fields.展开更多
The low flow coefficient centrifugal impeller(LFCCI)gives a relatively low efficiency and a special treatment is required for the design of this kind of impeller.This paper investigates the influences of cavity leakag...The low flow coefficient centrifugal impeller(LFCCI)gives a relatively low efficiency and a special treatment is required for the design of this kind of impeller.This paper investigates the influences of cavity leakage on the performance prediction and design of LFCCI based on Computational Fluid Dynamics(CFD)techniques.The results show that,the reduction in the effi-ciency of impeller due to the introduction of cavity leakage varies with the blade shape of impeller in a wide range since there is a strong and complex interaction of main flow and leakage flow in the LFCCI.To get a credible optimization result,the backside and foreside cavities should be considered in the CFD-based design of LFCCI.展开更多
When sonic nozzles of significantly smaller diameter are used as standard flow meters,the critical back pressure ratio is affected by the boundary layer at the nozzle throat.However,the effect of the boundary layer on...When sonic nozzles of significantly smaller diameter are used as standard flow meters,the critical back pressure ratio is affected by the boundary layer at the nozzle throat.However,the effect of the boundary layer on choking criteria is still controversial.Then,the choking phenomenon of a convergent nozzle flow has been experimentally investigated using four convergent nozzles with the same diameter followed by a straight pipe of a variable length.As a result,it is shown that the critical back pressure ratio is smaller than that for the steady one-dimensional is-entropic flow and decreases as the boundary layer thickness increases.Moreover,the main flow Mach number at the nozzle exit is supersonic when the back pressure ratio is equivalent to the choking condition,and the Mach number increases as the boundary layer thickness increases.展开更多
基金Project(20030335058) supported by the Special Research Fund for the Doctoral Programof Higher Education of China
文摘Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability.
基金Project supported by the National Basic Research Program (973) of China (No.2006CB705400)the National Natural Science Foundation of China (No.50575200)
文摘The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.
文摘This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient conditions. ICBP is a totally implantable LVAD (left ventricular assist device) with ceramic bearings developed for long term circulatory assistance. FwC uses PI (proportional-integral) control to adjust rotational speed in order to provide blood flow. FwC does not use sensor for feedback, as there is an estimation system to provide blood flow measurement. Control strategy has being studied in a HCS (hybrid cardiovascular simulator) as a tool that allows the physical connection of ICBP during evaluation. In addition, HCS allows changes of some cardiovascular parameters in order to simulate specific heart disease: ejection fraction (10-25%) and heart rate (50-110 bpm). FwC was able to adjust blood flow with steady error less than 2%. Results demonstrated that FwC is adequate to LVAD control irL different left ventricle failure conditions.
文摘This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss and bypass interference control technology, and the reasonable combination of two kinds of technology to design straight bypass joint deployment. On basis of it, we design a new P2P traffic monitoring system. Through the design and implementation of computer network traffic monitoring system based on C/S mode to achieve automatic control, maintenance, and monitor network traffic, which is suitable for the current engineering software to monitor a network application environment. From the network users and network operator' s perspective, monitoring of network traffic is scientific, reasonable that improve network management and it has important research value.
基金Supported by the National Natural Science Foundation of China(51304231)the Natural Science Foundation of Shandong Province(ZR2010EQ015)
文摘We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.
基金supported by the Special Fund for Strategic Pilot Technology,Chinese Academy of Sciences[grant number XDA05040300]
文摘In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory integrations,achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code(Version 3).By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes,it is found that stratosphere-to-troposphere transport(STT)fluxes exist in the center of COLs;and in the periphery of the COL center,troposphereto-stratosphere transport(TST)fluxes and STT fluxes are distributed alternately.Net transport fluxes in COLs are from stratosphere to troposphere,and the magnitude is about 10-4 kg m-2 s-1.The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs.By adopting appropriate residence time,the spurious transports are effectively excluded.Finally,the authors compare the results with previous studies,and find that the cross-tropopause fluxes(CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs.COLs play a significant role in local,rapid air mass exchanges,although they may only be responsible for a fraction of the total STE.
文摘The issue of goodwill impairment has been debated in many countries throughout the world. Adoption of International Financial Reporting Standards (IFRS) introduced fundamental changes in accounting and impairment methods for goodwill. Since global stock markets went into decline in 2008, there has been much debate over the issue of goodwill impairment in the US and European stock exchange markets, especially on how large the write-downs should be. Complexity of International Accounting Standards (IAS) and IFRS focusing on goodwill and goodwill impairment techniques may lead to inconsistent compliance and varying levels of disclosure quality. The aim of this study is to analyze goodwill impairment during and after the recent financial crisis for companies listed on the Borsa Istanbul (BIST) 100 index and to assist the financial statement users in the assessment of disclosure quality under IAS 36, Paragraph 134d. Tools such as: (1) the period over which management has projected cash flows; (2) the growth rate used for cash flow projections; (3) the discount rate(s) applied to projections; and (4) methods employed to determine recoverable amount are analyzed. Insufficient disclosures on these tools are observed. The findings are of interest to researchers examining the implication of IAS 36, regulators, and policy-setters.
文摘The velocity area method belongs to the group of primary methods for discharge measurement in hydropower plants. The measurements require an appropriate application of measuring devices and carrying out correctly the process of data analyzing including integration technique. The authors present their own experiences gathered during many years of utilizing the current meter method for discharge measurement in many hydropower plants. They have developed the special integration techniques using the progressive numerical algorithms. The techniques differ from the recommendations contained in the relevant international standards. The authors' own software for calculating the discharge from the measured local velocity distribution (obtained using current meters) adopts advanced spline functions, the so-called NURBS (non-uniform rational B-splines). Nowadays, this kind of splines is commonly used in modeling of the complex geometrical shapes because of their smoothness. It is assessed that it represents much better quality of interpolation than the classic spline functions (classic cubic spline technique). Particularly, the better properties of the NURBS splines can be observed for velocity profile area characterized by very strong velocity gradients where boundary layers meet the core regions of the flow (mainstream). In the developed software the boundary layer thickness and exponent of von Karman function is calculated in accordance with the ISO 3354 standard. The software has been successfully used during many performance tests of the hydraulic turbines in Poland for several years. Paper presents the results of flow rate measurements for two different flow systems of Kaplan turbines. First case concerns the application of the current meters in a long circular penstock whereas the second one in short rectangular turbine intake. A comparative analysis of three flow calculation procedures applied for these two cases is presented in the paper-(1) the integration procedure according to the ISO 3354 standard; (2) the integration procedure based on the NS (natural splines); and (3) the integration procedure based on the NURBS. The results obtained using these three procedures for the first case (intake via long circular penstock) were compared with the results of discharge measurements conducted using the pressure-time method.
文摘An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors are described in comparison with conventional type of rotor-stator, based on theoretical and experimental investigations. The advantages are as follows: (1) The pump is inherently designed as smaller sized and at lower rotational speed. (2) A stable head-characteristic curve for flow rate with negative slope appears. (3) As the rear rotor rotational speed is varied as independent control of front rotor, the wider range of high performance operation is obtained by rear rotor speed control in addition to front rotor speed control. The disadvantages are as follows: (1) The structure of double shaft system becomes complex. (2) The pump performance is inferior at over flow rate as the rear rotor loading is weakened. (3) The blade rows interaction from rear rotor to front rotor more strongly appears. Then the rear rotor design is a key to achieve higher pump performance. Some methods to overcome these disadvantages will be discussed in more details toward wider usage of contra-rotating axial flow pump in various industrial fields.
基金supported by the National Natural Science Foundation of China(Grant No.50725621)
文摘The low flow coefficient centrifugal impeller(LFCCI)gives a relatively low efficiency and a special treatment is required for the design of this kind of impeller.This paper investigates the influences of cavity leakage on the performance prediction and design of LFCCI based on Computational Fluid Dynamics(CFD)techniques.The results show that,the reduction in the effi-ciency of impeller due to the introduction of cavity leakage varies with the blade shape of impeller in a wide range since there is a strong and complex interaction of main flow and leakage flow in the LFCCI.To get a credible optimization result,the backside and foreside cavities should be considered in the CFD-based design of LFCCI.
文摘When sonic nozzles of significantly smaller diameter are used as standard flow meters,the critical back pressure ratio is affected by the boundary layer at the nozzle throat.However,the effect of the boundary layer on choking criteria is still controversial.Then,the choking phenomenon of a convergent nozzle flow has been experimentally investigated using four convergent nozzles with the same diameter followed by a straight pipe of a variable length.As a result,it is shown that the critical back pressure ratio is smaller than that for the steady one-dimensional is-entropic flow and decreases as the boundary layer thickness increases.Moreover,the main flow Mach number at the nozzle exit is supersonic when the back pressure ratio is equivalent to the choking condition,and the Mach number increases as the boundary layer thickness increases.