This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
The main objective of this paper is that of surveying both theoretic and econometric models exploring the existence of knowledge spillovers and quantifying firm's ability to identify, assimilate, and exploit existing...The main objective of this paper is that of surveying both theoretic and econometric models exploring the existence of knowledge spillovers and quantifying firm's ability to identify, assimilate, and exploit existing information (absorptive capacity). In so doing, we explore different methodologies through which we may analyze the knowledge transmission: both the production function approach and the knowledge function approach. In order to construct the spillover stocks, different dimensions are considered: geographic and technological.展开更多
Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases...Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases to enhance the performance of modified solar chimney consisting of Savonius wind rotor. A modified solar chimney model was designed and fabricated to carry out experimental measurement. The model consists of thermal energy conversion unit; Savonius wind rotor and a chimney. The thermal energy in the flue gas transfers to the air particles in the air channel across the absorber plate and results in upward air stream due to the buoyancy effect. With an 9 absorber area of 2.36 re'and flue gas mass flow rate of0.18 kg/s, air velocity' of 4.1 m/s was achieved at the top of the thermal unit. Increasing the mass flow rate of the flue gas to 0.24 kg/s enhances the air velocity to be 4.6 m/s. The results have demonstrated the possibility' of utilizing the thermal energy in the waste flue gas to enhance the performance of a solar chimney and facilitate the continuous operation during the absence of the sun.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
文摘The main objective of this paper is that of surveying both theoretic and econometric models exploring the existence of knowledge spillovers and quantifying firm's ability to identify, assimilate, and exploit existing information (absorptive capacity). In so doing, we explore different methodologies through which we may analyze the knowledge transmission: both the production function approach and the knowledge function approach. In order to construct the spillover stocks, different dimensions are considered: geographic and technological.
文摘Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases to enhance the performance of modified solar chimney consisting of Savonius wind rotor. A modified solar chimney model was designed and fabricated to carry out experimental measurement. The model consists of thermal energy conversion unit; Savonius wind rotor and a chimney. The thermal energy in the flue gas transfers to the air particles in the air channel across the absorber plate and results in upward air stream due to the buoyancy effect. With an 9 absorber area of 2.36 re'and flue gas mass flow rate of0.18 kg/s, air velocity' of 4.1 m/s was achieved at the top of the thermal unit. Increasing the mass flow rate of the flue gas to 0.24 kg/s enhances the air velocity to be 4.6 m/s. The results have demonstrated the possibility' of utilizing the thermal energy in the waste flue gas to enhance the performance of a solar chimney and facilitate the continuous operation during the absence of the sun.