A single on/off valve is used to carry out the position control of the asymmetrical hydraulic cylinder. The influence of the nominal flow rate on the positional accuracy of piston is investigated and the proximate for...A single on/off valve is used to carry out the position control of the asymmetrical hydraulic cylinder. The influence of the nominal flow rate on the positional accuracy of piston is investigated and the proximate formula for calculating the nominal flow rate of on/off valve is introduced. The system structure proposed in this paper could avoid cavitation and hyper pressure in two chambers to some extent. The simulation results indicated that the control method in this paper could satisfy the expected control requirements.展开更多
The approximate analytical solution of velocity is presented for incompressible and viscous fluid driven by the oscillation of the periodic pressure, between two slit parallel plates with corrugated walls by employing...The approximate analytical solution of velocity is presented for incompressible and viscous fluid driven by the oscillation of the periodic pressure, between two slit parallel plates with corrugated walls by employing perturbation method. The corrugations of the two walls are described as periodic sinusoidal waves with small amplitude either in phase or half-period out of phase. Based on the analysis, we discuss the influence of the dimensionless parameters on velocity u±and mean velocity parameter φ±numerically, such as Reynolds number Re, nondimensional amplitude A of pressure gradient and wave number k.展开更多
基金the National Natural Science Foundation of China (No. 50575202)
文摘A single on/off valve is used to carry out the position control of the asymmetrical hydraulic cylinder. The influence of the nominal flow rate on the positional accuracy of piston is investigated and the proximate formula for calculating the nominal flow rate of on/off valve is introduced. The system structure proposed in this paper could avoid cavitation and hyper pressure in two chambers to some extent. The simulation results indicated that the control method in this paper could satisfy the expected control requirements.
基金Supported by the National Natural Science Foundation of China under Grant No.11472140the Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No.2016MS0106the Inner Mongolia Grassland Talent under Grant No.12000-12102013
文摘The approximate analytical solution of velocity is presented for incompressible and viscous fluid driven by the oscillation of the periodic pressure, between two slit parallel plates with corrugated walls by employing perturbation method. The corrugations of the two walls are described as periodic sinusoidal waves with small amplitude either in phase or half-period out of phase. Based on the analysis, we discuss the influence of the dimensionless parameters on velocity u±and mean velocity parameter φ±numerically, such as Reynolds number Re, nondimensional amplitude A of pressure gradient and wave number k.