A sound speed profile plays an important role in shallow water sound propagation.Concurrent with in-situ measurements,many inversion methods,such as matched-field inversion,have been put forward to invert the sound sp...A sound speed profile plays an important role in shallow water sound propagation.Concurrent with in-situ measurements,many inversion methods,such as matched-field inversion,have been put forward to invert the sound speed profile from acoustic signals.However,the time cost of matched-field inversion may be very high in replica field calculations.We studied the feasibility and robustness of an acoustic tomography scheme with matched-field processing in shallow water,and described the sound speed profile by empirical orthogonal functions.We analyzed the acoustic signals from a vertical line array in ASIAEX2001 in the East China Sea to invert sound speed profiles with estimated empirical orthogonal functions and a parallel genetic algorithm to speed up the inversion.The results show that the inverted sound speed profiles are in good agreement with conductivity-temperature-depth measurements.Moreover,a posteriori probability analysis is carried out to verify the inversion results.展开更多
It is better to use a simple configuration to enhance the matched-field inversion method based on a horizontal line applicability of ocean environment inversion in shallow water. A array (HLA) is used to retrieve th...It is better to use a simple configuration to enhance the matched-field inversion method based on a horizontal line applicability of ocean environment inversion in shallow water. A array (HLA) is used to retrieve the variation of sound speed profile. The performance of the inversion method is verified in the South China Sea in June, 2010. An HLA laid at bottom was used to receive signals from a bottom-mounted transducer. Inverted mean sound speed profiles from 9-hour long acoustic signals are in good agreement with measurements from two temperature chains at the sites of the source and receiver. The results show that an HLA can be used to monitor the variability of shallow-water sound speed profile.展开更多
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-02)the National Natural Science Foundation of China (Nos.10974218,10734100)
文摘A sound speed profile plays an important role in shallow water sound propagation.Concurrent with in-situ measurements,many inversion methods,such as matched-field inversion,have been put forward to invert the sound speed profile from acoustic signals.However,the time cost of matched-field inversion may be very high in replica field calculations.We studied the feasibility and robustness of an acoustic tomography scheme with matched-field processing in shallow water,and described the sound speed profile by empirical orthogonal functions.We analyzed the acoustic signals from a vertical line array in ASIAEX2001 in the East China Sea to invert sound speed profiles with estimated empirical orthogonal functions and a parallel genetic algorithm to speed up the inversion.The results show that the inverted sound speed profiles are in good agreement with conductivity-temperature-depth measurements.Moreover,a posteriori probability analysis is carried out to verify the inversion results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11434012,11404366,11125420 and 11074269)
文摘It is better to use a simple configuration to enhance the matched-field inversion method based on a horizontal line applicability of ocean environment inversion in shallow water. A array (HLA) is used to retrieve the variation of sound speed profile. The performance of the inversion method is verified in the South China Sea in June, 2010. An HLA laid at bottom was used to receive signals from a bottom-mounted transducer. Inverted mean sound speed profiles from 9-hour long acoustic signals are in good agreement with measurements from two temperature chains at the sites of the source and receiver. The results show that an HLA can be used to monitor the variability of shallow-water sound speed profile.