Heavy summer rainfall induces significant soil erosion and shallow landslide activity on the loess hillslopes of the Xining Basin at the northeast margin of the Qinghai-Tibet Plateau. This study examines the mechanica...Heavy summer rainfall induces significant soil erosion and shallow landslide activity on the loess hillslopes of the Xining Basin at the northeast margin of the Qinghai-Tibet Plateau. This study examines the mechanical effects of five native shrubs that can be used to reduce shallow landslide activity. We measured single root tensile resistance and shear resistance, root anatomical structure and direct shear and triaxial shear for soil without roots and five root- soil composite systems. Results show that Atriplex canescens (Pursh) Nutt. possessed the strongest roots, followed by Caragana korshinskii Kom., Zygophyllum xanthoxylon (Bunge) Maxim., Nitraria tangutorum Bobr. and Lycium chinense Mill. Single root strength and shear resistance relationships with root diameter are characterized by power or exponential relations, consistent with the Mohr- Coulomb law. Root mechanical strength reflects their anatomical structure, especially the percentage of phloem and xylem cells, and the degree and speed of periderm lignifications. The cohesion force of root- soil composite systems is notably higher than that of soil without roots, with increasing amplitudes of cohesion force for A. canescens, C. korshinskii, Z. xanthoxylon, N. tangutorurn and L. chinense of 75.9%, 75.1%, 36.2%, 24.6% and 17.0 % respectively. When subjected to shear forces, the soil without root samples show much greater lateral deformation thanthe root-soil composite systems, reflecting the restraining effects of roots. Findings from this paper indicate that efforts to reduce shallow landslides in this region by enhancing root reinforcement will be achieved most effectively using A. canescens and C. korshinskii.展开更多
The Upper Chao Phraya River Basin, Thailand, has been facing continuous groundwater level decreases due to over-extraction for irrigation. MAR (managed aquifer recharge) using infiltration pond was investigated and ...The Upper Chao Phraya River Basin, Thailand, has been facing continuous groundwater level decreases due to over-extraction for irrigation. MAR (managed aquifer recharge) using infiltration pond was investigated and constructed. A recharge experiment at the pilot site at Ban Nong Na, Phitsanulok Province, was conducted during 2009 to 2011 to mitigate the declining shallow groundwater level. The HELP3 and MODFLOW models were applied to explore the current groundwater recharge. The MODFLOW was used to simulate the recharge mechanism of the experiment in the 1,260 m2 infiltration pond during July to November, 2010. The simulated results showed the groundwater influx and outflux for the year 2010 were 1.34 Mm3 1.57 Mm3, respectively. The annual shallow groundwater extraction was 1.40 Mm3 resulting in the groundwater system deficit of 0.23 Mm3 and causing groundwater level decline at the rate of 0.25 m/yr. The critical zone with groundwater level deeper than 8 m from the ground surface covers 19% of the study area of 4.12 km2 and it would be increased up to 85% within the next 10 years (2020). To achieve the groundwater system balance, the deficit amount of 0.23 Mm3 is needed and six infiltration ponds are required.展开更多
Marine red beds occur frequently in China through geological time.Despite their complex environments,the red beds are found in three depositional settings:1) oceanic,deep water,as in the Upper Cretaceous of southern T...Marine red beds occur frequently in China through geological time.Despite their complex environments,the red beds are found in three depositional settings:1) oceanic,deep water,as in the Upper Cretaceous of southern Tibet;2) outer shelf,deeper water,as in the Lower-Middle Ordovician of South China;and 3) inner shelf,shallow water,as in the Silurian and Triassic in South China.The Silurian marine red beds are recurrent in the lower Telychian,upper Telychian,and upper Ludlow.This paper is to document the marine nature of the lower Telychian red beds (LRBs) in the Upper Yangtze Region and to discuss the spatial and temporal distribution of the LRBs and their depositional environments.The LRBs are best developed on the north side of the Cathaysian Oldland,which can be interpreted as the source area.It is inferred that they were deposited during a marine regression,characterized by the lack of upwelling,low nutrition and organic productivity with a decrease of biodiversity and a high rate of sedimentation.The iron-rich sediments may have been transported by rivers on the oldland into the Upper Yangtze Sea,as rates of deposition were rapid enough to counteract normal reducing effect around sediment-water interface.The LRBs are different from the off-shore,deeper water red beds of lower Telychian in Avalonia and Baltica and further from the oceanic,deep water red beds of Upper Cretaceous in southern Tibet chiefly in palaeogeographic settings,biotic assemblages and marine environments.展开更多
On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry a...On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41162010)Excellent Talents in University of New Century by Ministry of Education of the People's Republic of China(Grant No.NCET-04-G983)International Science & Technology Cooperation Program of China(Grant No.2011DFG93160)
文摘Heavy summer rainfall induces significant soil erosion and shallow landslide activity on the loess hillslopes of the Xining Basin at the northeast margin of the Qinghai-Tibet Plateau. This study examines the mechanical effects of five native shrubs that can be used to reduce shallow landslide activity. We measured single root tensile resistance and shear resistance, root anatomical structure and direct shear and triaxial shear for soil without roots and five root- soil composite systems. Results show that Atriplex canescens (Pursh) Nutt. possessed the strongest roots, followed by Caragana korshinskii Kom., Zygophyllum xanthoxylon (Bunge) Maxim., Nitraria tangutorum Bobr. and Lycium chinense Mill. Single root strength and shear resistance relationships with root diameter are characterized by power or exponential relations, consistent with the Mohr- Coulomb law. Root mechanical strength reflects their anatomical structure, especially the percentage of phloem and xylem cells, and the degree and speed of periderm lignifications. The cohesion force of root- soil composite systems is notably higher than that of soil without roots, with increasing amplitudes of cohesion force for A. canescens, C. korshinskii, Z. xanthoxylon, N. tangutorurn and L. chinense of 75.9%, 75.1%, 36.2%, 24.6% and 17.0 % respectively. When subjected to shear forces, the soil without root samples show much greater lateral deformation thanthe root-soil composite systems, reflecting the restraining effects of roots. Findings from this paper indicate that efforts to reduce shallow landslides in this region by enhancing root reinforcement will be achieved most effectively using A. canescens and C. korshinskii.
文摘The Upper Chao Phraya River Basin, Thailand, has been facing continuous groundwater level decreases due to over-extraction for irrigation. MAR (managed aquifer recharge) using infiltration pond was investigated and constructed. A recharge experiment at the pilot site at Ban Nong Na, Phitsanulok Province, was conducted during 2009 to 2011 to mitigate the declining shallow groundwater level. The HELP3 and MODFLOW models were applied to explore the current groundwater recharge. The MODFLOW was used to simulate the recharge mechanism of the experiment in the 1,260 m2 infiltration pond during July to November, 2010. The simulated results showed the groundwater influx and outflux for the year 2010 were 1.34 Mm3 1.57 Mm3, respectively. The annual shallow groundwater extraction was 1.40 Mm3 resulting in the groundwater system deficit of 0.23 Mm3 and causing groundwater level decline at the rate of 0.25 m/yr. The critical zone with groundwater level deeper than 8 m from the ground surface covers 19% of the study area of 4.12 km2 and it would be increased up to 85% within the next 10 years (2020). To achieve the groundwater system balance, the deficit amount of 0.23 Mm3 is needed and six infiltration ponds are required.
基金supported by Chinese Academy of Sciences (Grant No. KZCX2-YW-Q05-01)National Basic Research Program of China (Grant No. 2012CB821901)China Geological Survey (Grant No. 1212011120116)
文摘Marine red beds occur frequently in China through geological time.Despite their complex environments,the red beds are found in three depositional settings:1) oceanic,deep water,as in the Upper Cretaceous of southern Tibet;2) outer shelf,deeper water,as in the Lower-Middle Ordovician of South China;and 3) inner shelf,shallow water,as in the Silurian and Triassic in South China.The Silurian marine red beds are recurrent in the lower Telychian,upper Telychian,and upper Ludlow.This paper is to document the marine nature of the lower Telychian red beds (LRBs) in the Upper Yangtze Region and to discuss the spatial and temporal distribution of the LRBs and their depositional environments.The LRBs are best developed on the north side of the Cathaysian Oldland,which can be interpreted as the source area.It is inferred that they were deposited during a marine regression,characterized by the lack of upwelling,low nutrition and organic productivity with a decrease of biodiversity and a high rate of sedimentation.The iron-rich sediments may have been transported by rivers on the oldland into the Upper Yangtze Sea,as rates of deposition were rapid enough to counteract normal reducing effect around sediment-water interface.The LRBs are different from the off-shore,deeper water red beds of lower Telychian in Avalonia and Baltica and further from the oceanic,deep water red beds of Upper Cretaceous in southern Tibet chiefly in palaeogeographic settings,biotic assemblages and marine environments.
基金supported by the National Basic Research Program of China(Grant No.2013CB430206,2012CB955304)National Natural Science Foundation of China(Grant Nos.41075008,40830957,41275118)+2 种基金China Postdoctoral Science Special Foundation(Grant No.2013T60901)China Postdoctoral Science Foundation(Grant No.20110490854)the Ten Talents Program of Gansu Meteorology Bureau
文摘On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.