Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface ...Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.展开更多
Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same...Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same stress state, different normal stresses on element boundaries were used. In order to investigate the influence of different factors on supporting pressures, the failure mechanism was established. The solution of supporting pressure, with different parameters, was obtained by optimization theory. The corresponding failure mechanism and numerical results were presented. In comparison with the results using the single tangential technique method, it is found that the proposed method is effective, and the good agreement shows that the present solution of supporting pressure is reliable.展开更多
In this paper,a modified warping operator for homogeneous shallow water based on the Beam-Displacement Ray-Mode(BDRM)theory is presented.According to the BDRM theory,the contribution of the beam displacement and the t...In this paper,a modified warping operator for homogeneous shallow water based on the Beam-Displacement Ray-Mode(BDRM)theory is presented.According to the BDRM theory,the contribution of the beam displacement and the time delay to the group velocity can be easily considered in a shallow water waveguide.A more accurate dispersion formula is derived by using the cycle distance formula to calculate the group velocity of normal modes.The derived dispersion formula can be applied to the homogeneous shallow water waveguide.Theoretically,the formula is related to the phase of the reflection coefficient and suitable for various bottom models.Furthermore,based on the derived dispersion relation,the modified warping operator is developed to obtain linear modal structures.For the Pekeris model,the formulae for the phase of the reflection coefficient are derived in this work.By taking account of the effect of the bottom attenuation on the reflection coefficient,the formula for the phase of the reflection coefficient including the bottom attenuation is obtained for the Pekeris model with a lossy bottom.Performance and accuracy of different formulae are evaluated and compared.The numerical simulations indicate that the derived dispersion formulae and the modified warping operator are more accurate.展开更多
文摘Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.
基金Projects(2013CB0360042011CB013800)supported by the National Basic Research Program of China+1 种基金Project(51178468)supported by the National Natural Science Foundation of ChinaProject(2011G013-B)supported by the Science and Technology Development of Railways Department in China
文摘Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same stress state, different normal stresses on element boundaries were used. In order to investigate the influence of different factors on supporting pressures, the failure mechanism was established. The solution of supporting pressure, with different parameters, was obtained by optimization theory. The corresponding failure mechanism and numerical results were presented. In comparison with the results using the single tangential technique method, it is found that the proposed method is effective, and the good agreement shows that the present solution of supporting pressure is reliable.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174312 and 11074269)
文摘In this paper,a modified warping operator for homogeneous shallow water based on the Beam-Displacement Ray-Mode(BDRM)theory is presented.According to the BDRM theory,the contribution of the beam displacement and the time delay to the group velocity can be easily considered in a shallow water waveguide.A more accurate dispersion formula is derived by using the cycle distance formula to calculate the group velocity of normal modes.The derived dispersion formula can be applied to the homogeneous shallow water waveguide.Theoretically,the formula is related to the phase of the reflection coefficient and suitable for various bottom models.Furthermore,based on the derived dispersion relation,the modified warping operator is developed to obtain linear modal structures.For the Pekeris model,the formulae for the phase of the reflection coefficient are derived in this work.By taking account of the effect of the bottom attenuation on the reflection coefficient,the formula for the phase of the reflection coefficient including the bottom attenuation is obtained for the Pekeris model with a lossy bottom.Performance and accuracy of different formulae are evaluated and compared.The numerical simulations indicate that the derived dispersion formulae and the modified warping operator are more accurate.