基于标准Bipolar-CMOS-DMOS(BCD)工艺研制的抗辐射电源管理芯片无法满足航天应用要求,抗辐射BCD工艺的发展严重制约了我国在航天领域核心器件的研制。与CMOS器件相比,LDMOS器件具有更高的工作电压和更多的介质结构,更易受到总剂量问题...基于标准Bipolar-CMOS-DMOS(BCD)工艺研制的抗辐射电源管理芯片无法满足航天应用要求,抗辐射BCD工艺的发展严重制约了我国在航天领域核心器件的研制。与CMOS器件相比,LDMOS器件具有更高的工作电压和更多的介质结构,更易受到总剂量问题的困扰。本文基于标准0.18μm BCD工艺,开展了18 V NLDMOS器件总剂量辐射效应研究,提出了一种总剂量辐射加固工艺技术。采用离子注入和材料改性技术工艺,提高了浅槽隔离场区边缘的P型硅反型阈值,从而增强了NLDMOS器件的抗辐射能力。通过对比实验表明,当辐照总剂量为100 krad(Si)时,加固的NLDMOS器件的抗辐射性能明显优于非加固的器件。通过总剂量辐射加固工艺技术的研究,可有效提高器件的抗总剂量辐射能力,避免设计加固造成芯片面积增大的问题。展开更多
文摘基于标准Bipolar-CMOS-DMOS(BCD)工艺研制的抗辐射电源管理芯片无法满足航天应用要求,抗辐射BCD工艺的发展严重制约了我国在航天领域核心器件的研制。与CMOS器件相比,LDMOS器件具有更高的工作电压和更多的介质结构,更易受到总剂量问题的困扰。本文基于标准0.18μm BCD工艺,开展了18 V NLDMOS器件总剂量辐射效应研究,提出了一种总剂量辐射加固工艺技术。采用离子注入和材料改性技术工艺,提高了浅槽隔离场区边缘的P型硅反型阈值,从而增强了NLDMOS器件的抗辐射能力。通过对比实验表明,当辐照总剂量为100 krad(Si)时,加固的NLDMOS器件的抗辐射性能明显优于非加固的器件。通过总剂量辐射加固工艺技术的研究,可有效提高器件的抗总剂量辐射能力,避免设计加固造成芯片面积增大的问题。