A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any ...A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any position of ocean surface under any ocean floor conditions using wave num decomposition.LOD scheme is proposed based on quad-tree block,which simplifies the ocean surface regular mesh and realizes the real-time rendering of large-scale ocean surface.Experimental results show that these methods can get realistic effect and fast rendering speed,which are appropriated to the applications of 3D games and battlefield simulation.展开更多
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model i...Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.展开更多
文摘A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any position of ocean surface under any ocean floor conditions using wave num decomposition.LOD scheme is proposed based on quad-tree block,which simplifies the ocean surface regular mesh and realizes the real-time rendering of large-scale ocean surface.Experimental results show that these methods can get realistic effect and fast rendering speed,which are appropriated to the applications of 3D games and battlefield simulation.
基金Supported by the National Science Fund for Distinguished Young Scholars (No 40425015)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos KZCX1-YW-12 and KZCX2-YW-201)
文摘Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.