The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-...The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing.展开更多
High-resolution shallow seismic methods are the most widely used geophysical methods in near surface characterization. However, in many cases interpreting the seismic images can be misleading. In this article, we pres...High-resolution shallow seismic methods are the most widely used geophysical methods in near surface characterization. However, in many cases interpreting the seismic images can be misleading. In this article, we present three case studies where results from P-wave seismic reflection, SH-wave seismic reflection, and multi-channel analysis of surface wave (MASW) surveys were incorrectly interpreted because of inadequate constraints on either the surveyed sites surface or subsurface conditions. A P-wave reflection survey feature was first interpreted as a shallow fault zone but it was later determined to result from a high level of background noise as the acquisition passed through a road intersection. A SH-wave seismic reflection survey feature was interpreted to be a reverse dip-slip fault but targeted drilling showed it was deep local erosion into the bedrock surface. Finally, in an MASW survey, a steeply dipping feature was first interpreted as a bedrock valley. However, later exploratory drilling showed the feature to be a shallow layer of very soft lake sediment that severely damped most of the applied surface wave frequency band. Although initial interpretations were incorrect, they stimulated discussions among geophysicists and geologists and underscored the need for meaningful cooperation and discourse between the scientists before, during, and after geophysical data acquisition.展开更多
基金Special R&D Project of Earthquake Trade ( No.200808041)the Project of Emergency Investigation of M_S8.0 Wenchuan Earthquake of CEA
文摘The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing.
文摘High-resolution shallow seismic methods are the most widely used geophysical methods in near surface characterization. However, in many cases interpreting the seismic images can be misleading. In this article, we present three case studies where results from P-wave seismic reflection, SH-wave seismic reflection, and multi-channel analysis of surface wave (MASW) surveys were incorrectly interpreted because of inadequate constraints on either the surveyed sites surface or subsurface conditions. A P-wave reflection survey feature was first interpreted as a shallow fault zone but it was later determined to result from a high level of background noise as the acquisition passed through a road intersection. A SH-wave seismic reflection survey feature was interpreted to be a reverse dip-slip fault but targeted drilling showed it was deep local erosion into the bedrock surface. Finally, in an MASW survey, a steeply dipping feature was first interpreted as a bedrock valley. However, later exploratory drilling showed the feature to be a shallow layer of very soft lake sediment that severely damped most of the applied surface wave frequency band. Although initial interpretations were incorrect, they stimulated discussions among geophysicists and geologists and underscored the need for meaningful cooperation and discourse between the scientists before, during, and after geophysical data acquisition.