A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at differe...A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.展开更多
Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with ex...Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.展开更多
The feasibility of semi solid processing of hypereutectic A390 alloys using a novel rheoforming process was investigated. A combination of the swirl enthalpy equilibration device (SEED) process, isothermal holding u...The feasibility of semi solid processing of hypereutectic A390 alloys using a novel rheoforming process was investigated. A combination of the swirl enthalpy equilibration device (SEED) process, isothermal holding using insulation and addition of solid alloy during swirling was introduced as a novel method to improve the processability of semi solid slurry. The effects of isothermal holding and the addition of solid alloy on the temperature gradient between the centre and the wall and on the formation of a(Al) particles were examined. In additional tests, phosphorus and strontium were added to the molten metal to refine the primary and eutectic silicon structure to facilitate semi solid processing. The results show that the combination of the SEED process with two additional processing steps can produce semi-solid A390 alloys that can be rheoprocessed. The microstructure reveals an adequate amount of non-dendritic a(Al) globules surrounded by liquid, which greatly improves the processability of semi-solid slurry.展开更多
基金Project (2011CB606302-1) supported by the National Basic Research Program of ChinaProject (2013AA031001) supported by Hi-Tech Research and Development Program of China
文摘A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.
基金financial supports from the Shenzhen Science and Technology Innovation Commission, China (Nos. KQTD20170328154443162, JCYJ20180305123432756)。
文摘Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.
基金the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan through the NSERC Industrial Research Chair in Metallurgy of Aluminum Transformation at Université du Québec à Chicoutimi
文摘The feasibility of semi solid processing of hypereutectic A390 alloys using a novel rheoforming process was investigated. A combination of the swirl enthalpy equilibration device (SEED) process, isothermal holding using insulation and addition of solid alloy during swirling was introduced as a novel method to improve the processability of semi solid slurry. The effects of isothermal holding and the addition of solid alloy on the temperature gradient between the centre and the wall and on the formation of a(Al) particles were examined. In additional tests, phosphorus and strontium were added to the molten metal to refine the primary and eutectic silicon structure to facilitate semi solid processing. The results show that the combination of the SEED process with two additional processing steps can produce semi-solid A390 alloys that can be rheoprocessed. The microstructure reveals an adequate amount of non-dendritic a(Al) globules surrounded by liquid, which greatly improves the processability of semi-solid slurry.