The main objective of this research was to study the removal of turbidity and COD (chemical oxygen demand) from a synthetic water sample. The water sample was treated chemically by coagulation. Two inorganic coagula...The main objective of this research was to study the removal of turbidity and COD (chemical oxygen demand) from a synthetic water sample. The water sample was treated chemically by coagulation. Two inorganic coagulants were used, ferric chloride and the double salt potassium-aluminium sulphate. The optimum coagulant dosage and working pH were examined. The results for ferric chloride as coagulant showed that the maximum removal efficiency (%) of COD was achieved at pH 6 with a dosage of 100 mg-L-1 and the maximum removal efficiency (%) of turbidity at pH 5 with a dosage of 500 mg.L-1. For double salt, as coagulant, the maximum removal efficiencies (%) of COD and turbidity were achieved at pH 6 with a dosage of 3,500 mg.L-1. An extensive comparison with results from previous studies was also described in this research.展开更多
To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Lon...To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Longhupao Reservoir in Heilongjiang Province for the removal of turbidity, COl), UV254 and residual Al. Coagulation test shows that the coagulation enhanced by CBF and PAFC exhibits more effective performance than that enhanced by the individual of them, and the total combination dosage is lower than that of the individual. The residual Al from PAFC can be removed efficiently by CBF. The removal efficiency of turbidity reaches 76.6% by combining CBF of 2 mg/L and PAFC of 15 mg/L, COl) is decreased from 3.80 mg/L to 1.62 mg/ L, and the concentration of residual Al is only 0. 033 mg/L in the product water. It can be speculated that adsorption-bridging and sweep-coagulation processes are predominant in the flocculation process by the combination of CBF and PAFC.展开更多
Grain analyzer, turbidimeter, Zeta potential instrument and microscope with Panansonic CCD are used to analyse the distribution of the bentonite grain, test the Zeta potential of bentonite and observe the structure of...Grain analyzer, turbidimeter, Zeta potential instrument and microscope with Panansonic CCD are used to analyse the distribution of the bentonite grain, test the Zeta potential of bentonite and observe the structure of floes. Through the comparison among chitosan, PAM, and aluminum salt, it can be inferred that the flocculation mechanism of chitosan is something like interpartical bridging of PAM rather than the electrical neutralization by prositive charge.展开更多
文摘The main objective of this research was to study the removal of turbidity and COD (chemical oxygen demand) from a synthetic water sample. The water sample was treated chemically by coagulation. Two inorganic coagulants were used, ferric chloride and the double salt potassium-aluminium sulphate. The optimum coagulant dosage and working pH were examined. The results for ferric chloride as coagulant showed that the maximum removal efficiency (%) of COD was achieved at pH 6 with a dosage of 100 mg-L-1 and the maximum removal efficiency (%) of turbidity at pH 5 with a dosage of 500 mg.L-1. For double salt, as coagulant, the maximum removal efficiencies (%) of COD and turbidity were achieved at pH 6 with a dosage of 3,500 mg.L-1. An extensive comparison with results from previous studies was also described in this research.
文摘To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Longhupao Reservoir in Heilongjiang Province for the removal of turbidity, COl), UV254 and residual Al. Coagulation test shows that the coagulation enhanced by CBF and PAFC exhibits more effective performance than that enhanced by the individual of them, and the total combination dosage is lower than that of the individual. The residual Al from PAFC can be removed efficiently by CBF. The removal efficiency of turbidity reaches 76.6% by combining CBF of 2 mg/L and PAFC of 15 mg/L, COl) is decreased from 3.80 mg/L to 1.62 mg/ L, and the concentration of residual Al is only 0. 033 mg/L in the product water. It can be speculated that adsorption-bridging and sweep-coagulation processes are predominant in the flocculation process by the combination of CBF and PAFC.
文摘Grain analyzer, turbidimeter, Zeta potential instrument and microscope with Panansonic CCD are used to analyse the distribution of the bentonite grain, test the Zeta potential of bentonite and observe the structure of floes. Through the comparison among chitosan, PAM, and aluminum salt, it can be inferred that the flocculation mechanism of chitosan is something like interpartical bridging of PAM rather than the electrical neutralization by prositive charge.