This study proposes an elastic finite difference(FD)time domain method with variable grids in three-dimensional cylindrical coordinates.The calculations will diverge and become less accurate by conventional cylindrica...This study proposes an elastic finite difference(FD)time domain method with variable grids in three-dimensional cylindrical coordinates.The calculations will diverge and become less accurate by conventional cylindrical FD as the grid size gradually becomes more extensive with the increasing radius.To prevent grids from being too coarse in far fields,we compensate for the grid cell infl ation by refi ning the grid step in the azimuthal direction.The variable grid FD in the cylindrical coordinate systems has a higher effi ciency in solving acoustic logging while drilling(LWD)problems because the grid boundaries are consistent with those of the drill collar and the borehole.The proposed algorithm saves approximately 94%of the FD grids,80%of the computation time,and memory with a higher calculation accuracy than the FD on rectangular grids for the same models.We also calculate the acoustic LWD responses of the fl uid-fi lled borehole intersecting with fractures.Refl ections are generated at the fractures,which can be equivalent to an additional scattering source.The mode conversions between the collar and the Stoneley waves are revealed.The Stoneley spectra are more sensitive to the fracture.Finally,the logs in a heterogeneous formation with two refl ectors far from the borehole are modeled,and a means of estimating the azimuth of geological interfaces from refl ections is proposed.展开更多
The occurrence of local circulating ventilation can be caused by many factors, such as the airflow reversion during mine fire,the improper arrangement of local fan or underground fan station and the man-made error inp...The occurrence of local circulating ventilation can be caused by many factors, such as the airflow reversion during mine fire,the improper arrangement of local fan or underground fan station and the man-made error input of raw data before network solving. Once circulating ventilations occur,the corresponding branches in the ventilation network corresponding to the relevant airways in ventilation system form circuits,and all the direc- tions of the branches in the circuits are identical,which is the unidirectional problem in ventilation network.Based on the properties of node adjacent matrix,a serial of mathe- matical computation to node adjacent matrix were performed,and a mathematical model for determining unidirectional circuits based on node adjacent matrix was put forward.展开更多
The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arri...The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arrival time and amplitude extracted by an ultrasonic imaging logging-while-drilling tool.In this study,a demodulation algorithm is used to preprocess the ultrasonic simulation signals while drilling,and we design a backpropagation neural network model to fit the relationship between the waveform data and time and amplitude.An ultrasonic imaging logging model is established,and the finite element simulation software is used for forward modeling.The response under diff erent measurement conditions is simulated by changing the model parameters,which are used as the input layer of the neural network model;The ultrasonic echo signal is considered as a low-frequency signal modulated by a high-frequency carrier signal,and a low-pass fi lter is designed to remove the high-frequency signal and obtain the low-frequency envelope signal.Then the amplitude of the envelope signal and its corresponding time are extracted as an output layer of the neural network model.By comparing the application eff ects of the various training methods,we fi nd that the conjugate gradient descent method is the most suitable method for solving the neural network model.The performance of the neural network model is tested using 11 groups of simulation test data,which verify the eff ectiveness of the model and lay the foundation for further practical application.展开更多
In order to understand the monitoring efficiency status of the well-water-level observation network in China after the completion of the 10 th "Five-year Plan " digital network project,and to provide a basis...In order to understand the monitoring efficiency status of the well-water-level observation network in China after the completion of the 10 th "Five-year Plan " digital network project,and to provide a basis for the future network optimization and equipment updating, the monitoring efficiency of the well-water-level observation network was evaluated. On the whole,61. 8% observing stations have good monitoring effectiveness,the observation environment of 73. 5% of observing stations meets the monitoring requirements of well-water-level. The operation status of the network is as a whole getting better,operation rates of 75% observing instruments are above 95%. Most well water levels can monitor crustal stress changes and seismic activities. However,some observation stations,due to inherent deficiency in wells,environmental disturbance,instrument aging,and low-level operation and maintenance,need to improve the monitoring efficiency level by taking measures such as observation environment improvement,equipment updating,and management training. About 6. 5% of the stations need to stop observation due to the unqualified observational environment.展开更多
This paper systematically introduced the method of direct, indirect and free-network adjustments and their application in data process of minewide ventilation measurements. The direct adjustment is suitable for errors...This paper systematically introduced the method of direct, indirect and free-network adjustments and their application in data process of minewide ventilation measurements. The direct adjustment is suitable for errors collating of the measurements of airflow rates. The indirect method is suitable for the adjustment of ventilation resistance. The free-net method is adapted to the combined adjustment of the measurements of both the ventilation in branches of the air network and the air pressure at nodes of the ventilation network, the partial adjustment is also introduced here to be used for saving the storage locations in computer required for the adjustment for large scale mine ventilation measurements.展开更多
The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi-...The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi- dimension series which included the ergodic information and more rich information could be excavated. Then, on the basis of the embedding dimension of the time series, the structure form of neutral network was constructed, of which the node number in input layer was the embedding dimension of the time series minus 1, and the node number in output layers was 1. Finally, as an example, the model was applied for water yield of mine forecasting. The result shows that the model has good fitting accuracy and forecasting precision.展开更多
In view of the difficulty of automatic adjustment, the recovery lag and the major accident potential of the mine ventilation system, an experimental model of the pipe net was established according to the typical one m...In view of the difficulty of automatic adjustment, the recovery lag and the major accident potential of the mine ventilation system, an experimental model of the pipe net was established according to the typical one mine and one working face ventilation system of Daliuta coal mine. Using the best uniform approximation method of Chebyshev interpolation to fit the fan performance curve, we experimentally determined fan characteristics with different frequencies and establish the data base for the curves. Based on ventilation network monitoring theory, we designed a monitoring system for ventilation network parameter monitoring and fan operating frequency automatic control. Using the absolute methane emission quantity to predict the air quantity requirement of branch and fan frequency, we established a f-ω regulation model based on fan frequency and absolute methane emission quantity. After analysing methane emission and distribution characteristics, using CO_2 to simulate the methane emission characteristics from a working face, we verified the correctness and rationality of the f-ω regulation model. The fan operation frequency is adjusted by the method of air adjustment change with methane emission quantity and the curve searching method after determining air quantity requirements. The results show that the air quantity in a branch strictly changes according to the f-ω regulation model, in the airincreasing dilution by fan frequency regulation, the CO_2 concentration is limited to the set threshold value. The paper verifies the practicability of a frequency regulation system and the feasibility of the frequency adjustment scheme and provides guidance for the construction of automatic frequency conversion control system in coal mine ventilation networks.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12174421,11774373,11734017,and 42074215).
文摘This study proposes an elastic finite difference(FD)time domain method with variable grids in three-dimensional cylindrical coordinates.The calculations will diverge and become less accurate by conventional cylindrical FD as the grid size gradually becomes more extensive with the increasing radius.To prevent grids from being too coarse in far fields,we compensate for the grid cell infl ation by refi ning the grid step in the azimuthal direction.The variable grid FD in the cylindrical coordinate systems has a higher effi ciency in solving acoustic logging while drilling(LWD)problems because the grid boundaries are consistent with those of the drill collar and the borehole.The proposed algorithm saves approximately 94%of the FD grids,80%of the computation time,and memory with a higher calculation accuracy than the FD on rectangular grids for the same models.We also calculate the acoustic LWD responses of the fl uid-fi lled borehole intersecting with fractures.Refl ections are generated at the fractures,which can be equivalent to an additional scattering source.The mode conversions between the collar and the Stoneley waves are revealed.The Stoneley spectra are more sensitive to the fracture.Finally,the logs in a heterogeneous formation with two refl ectors far from the borehole are modeled,and a means of estimating the azimuth of geological interfaces from refl ections is proposed.
基金National Nature Science Foundation of China(50704019)Nature Science Foundation of Liaoning Province(20062204)
文摘The occurrence of local circulating ventilation can be caused by many factors, such as the airflow reversion during mine fire,the improper arrangement of local fan or underground fan station and the man-made error input of raw data before network solving. Once circulating ventilations occur,the corresponding branches in the ventilation network corresponding to the relevant airways in ventilation system form circuits,and all the direc- tions of the branches in the circuits are identical,which is the unidirectional problem in ventilation network.Based on the properties of node adjacent matrix,a serial of mathe- matical computation to node adjacent matrix were performed,and a mathematical model for determining unidirectional circuits based on node adjacent matrix was put forward.
基金funded by the Sinopec Engineering Technology Research InstituteThe name of the project is the Research and Development of Drilling Wall Ultrasonic Imaging System(No.PE19011-1)。
文摘The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arrival time and amplitude extracted by an ultrasonic imaging logging-while-drilling tool.In this study,a demodulation algorithm is used to preprocess the ultrasonic simulation signals while drilling,and we design a backpropagation neural network model to fit the relationship between the waveform data and time and amplitude.An ultrasonic imaging logging model is established,and the finite element simulation software is used for forward modeling.The response under diff erent measurement conditions is simulated by changing the model parameters,which are used as the input layer of the neural network model;The ultrasonic echo signal is considered as a low-frequency signal modulated by a high-frequency carrier signal,and a low-pass fi lter is designed to remove the high-frequency signal and obtain the low-frequency envelope signal.Then the amplitude of the envelope signal and its corresponding time are extracted as an output layer of the neural network model.By comparing the application eff ects of the various training methods,we fi nd that the conjugate gradient descent method is the most suitable method for solving the neural network model.The performance of the neural network model is tested using 11 groups of simulation test data,which verify the eff ectiveness of the model and lay the foundation for further practical application.
基金funded by the National Key Basic Research Program of China(Grant No.2013CB733205)
文摘In order to understand the monitoring efficiency status of the well-water-level observation network in China after the completion of the 10 th "Five-year Plan " digital network project,and to provide a basis for the future network optimization and equipment updating, the monitoring efficiency of the well-water-level observation network was evaluated. On the whole,61. 8% observing stations have good monitoring effectiveness,the observation environment of 73. 5% of observing stations meets the monitoring requirements of well-water-level. The operation status of the network is as a whole getting better,operation rates of 75% observing instruments are above 95%. Most well water levels can monitor crustal stress changes and seismic activities. However,some observation stations,due to inherent deficiency in wells,environmental disturbance,instrument aging,and low-level operation and maintenance,need to improve the monitoring efficiency level by taking measures such as observation environment improvement,equipment updating,and management training. About 6. 5% of the stations need to stop observation due to the unqualified observational environment.
文摘This paper systematically introduced the method of direct, indirect and free-network adjustments and their application in data process of minewide ventilation measurements. The direct adjustment is suitable for errors collating of the measurements of airflow rates. The indirect method is suitable for the adjustment of ventilation resistance. The free-net method is adapted to the combined adjustment of the measurements of both the ventilation in branches of the air network and the air pressure at nodes of the ventilation network, the partial adjustment is also introduced here to be used for saving the storage locations in computer required for the adjustment for large scale mine ventilation measurements.
文摘The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi- dimension series which included the ergodic information and more rich information could be excavated. Then, on the basis of the embedding dimension of the time series, the structure form of neutral network was constructed, of which the node number in input layer was the embedding dimension of the time series minus 1, and the node number in output layers was 1. Finally, as an example, the model was applied for water yield of mine forecasting. The result shows that the model has good fitting accuracy and forecasting precision.
基金support from the National Key Research and Development Plan (No.2016YFC0801800)the National Natural Science Foundation of China (No.51404263)+2 种基金the National Natural Science Foundation of Jiangsu (No.BK20130203)the Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos.2014XT02 and 2014ZDPY03)
文摘In view of the difficulty of automatic adjustment, the recovery lag and the major accident potential of the mine ventilation system, an experimental model of the pipe net was established according to the typical one mine and one working face ventilation system of Daliuta coal mine. Using the best uniform approximation method of Chebyshev interpolation to fit the fan performance curve, we experimentally determined fan characteristics with different frequencies and establish the data base for the curves. Based on ventilation network monitoring theory, we designed a monitoring system for ventilation network parameter monitoring and fan operating frequency automatic control. Using the absolute methane emission quantity to predict the air quantity requirement of branch and fan frequency, we established a f-ω regulation model based on fan frequency and absolute methane emission quantity. After analysing methane emission and distribution characteristics, using CO_2 to simulate the methane emission characteristics from a working face, we verified the correctness and rationality of the f-ω regulation model. The fan operation frequency is adjusted by the method of air adjustment change with methane emission quantity and the curve searching method after determining air quantity requirements. The results show that the air quantity in a branch strictly changes according to the f-ω regulation model, in the airincreasing dilution by fan frequency regulation, the CO_2 concentration is limited to the set threshold value. The paper verifies the practicability of a frequency regulation system and the feasibility of the frequency adjustment scheme and provides guidance for the construction of automatic frequency conversion control system in coal mine ventilation networks.