A cylindrical coordinate measuring machine for the detection of large-size rotational parts is introduced. The measuring machine can simultaneously measure the geometrical dimensions, form and position errors of the i...A cylindrical coordinate measuring machine for the detection of large-size rotational parts is introduced. The measuring machine can simultaneously measure the geometrical dimensions, form and position errors of the inner and outer surfaces. Since the maximum length of the workpiece can reach 2 000 mm , it is difficult to be clamped and adjusted and easy to produce clamping error. The eccentricity can be up to 1.5 mm, which has an interaction effect with the probe mounting offset. We mainly study the probe offset of the measuring machine and the influence of the workpiece clamping error on the measurement. A method of controlling the offset of the measuring probe is proposed. The effect of the clamping error is eliminated through the space coordinate transformation of the workpiece axis, and the axis is fitted by the least square method. Finally, a common fixture can be realized to meet the clamping requirements of the workpiece.展开更多
Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomi...Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.展开更多
基金National Natural Science Foundation of China(No.51375338)National Key R&D Program of China(No.2017YFF0108102)
文摘A cylindrical coordinate measuring machine for the detection of large-size rotational parts is introduced. The measuring machine can simultaneously measure the geometrical dimensions, form and position errors of the inner and outer surfaces. Since the maximum length of the workpiece can reach 2 000 mm , it is difficult to be clamped and adjusted and easy to produce clamping error. The eccentricity can be up to 1.5 mm, which has an interaction effect with the probe mounting offset. We mainly study the probe offset of the measuring machine and the influence of the workpiece clamping error on the measurement. A method of controlling the offset of the measuring probe is proposed. The effect of the clamping error is eliminated through the space coordinate transformation of the workpiece axis, and the axis is fitted by the least square method. Finally, a common fixture can be realized to meet the clamping requirements of the workpiece.
基金supported by the National Natural Science Foundation of China(Grants Nos.51435003&51375092)supported by the Fundamental Research Funds for the Central Universities+1 种基金the Innovative Project for Graduate Students of Jiangsu Province(Grant No.KYLX_0100)the Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBJJ1540)
文摘Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.