Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in ...Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in optical properties as well as imaging approaches that measures those changes.Wide-field imaging approaches include narrow-band imaging that measures changes in light scattering and absorption,and autofluorescence imaging that measure changes in endogenous fluorophores.High-resolution imaging approaches include optical coherence tomography,endocytoscopy,confocal microendoscopy,and high-resolution microendoscopy.These technologies,some coupled with an appropriate contrast agent,can measure differences in glandular morphology,nuclear morphology,or vascular alterations associated with neoplasia.Advances in targeted contrast agents are further discussed.Studies that have explored these technologies are highlighted;as are the advantages and limitations of each.展开更多
Based on the correlation between certain properties of liquid and the properties of the corresponding liquid drop formed under given conditions, a liquid drop measuring device is utilized to monitor the drop formation...Based on the correlation between certain properties of liquid and the properties of the corresponding liquid drop formed under given conditions, a liquid drop measuring device is utilized to monitor the drop formation process of the liquid sample with photoelectric measuring methods. The mechanical and optical characteristic of the liquid is explored with the optical fibers from the internal of the liquid drop during its formation. The drop head capacitor is utilized to monitor the growth process of the liquid drop to gain the drop volume information related to the physical property of liquid. The unique liquid drop trace containing the integrated properties of liquid is generated, and it is proved by experiment that for different liquids their liquid drop traces are different. The analysis on liquid properties and discrimination between different liquids can be proceeded with the liquid drop trace obtained by the liquid drop measuring device.展开更多
The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of t...The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.展开更多
In optical performance monitoring system,the analog to digital converter is needed to detect the peak of nanosecond pulse and get the signal envelope.A scheme based on a designed anti-aliasing filter and analog to dig...In optical performance monitoring system,the analog to digital converter is needed to detect the peak of nanosecond pulse and get the signal envelope.A scheme based on a designed anti-aliasing filter and analog to digital converter is proposed to broaden the nanosecond pulse and make it easier for the analog to digital converter to catch the peak of the nanosecond pulse.The experimental results demonstrate that,with the proposed scheme,the optical performance system needs less time to get the recovered eye-diagram of high speed optical data signal,and is robust to phase mismatch in the analog to digital converter circuit.展开更多
Luster is one of the main factors in assessing fabric appearance. There are many different ways to definite and describe the luster, which result in disorder and discommodious in evaluation. Based on previous work, an...Luster is one of the main factors in assessing fabric appearance. There are many different ways to definite and describe the luster, which result in disorder and discommodious in evaluation. Based on previous work, an apparatus suited for the measure of lustre is developed. Which performed measure the reflection distribution of fabrics automatically. Then the objective judgment can be given by the geniophotometric curve. Finally taking several kind of specimens for example give the results to prove the effectiveness of the device.展开更多
A design for a fisheye optical system is modified in order to enable IR vision in addition to the visible and UV lighting. The proposed modification goes to replace the optical material of the movable lens by another ...A design for a fisheye optical system is modified in order to enable IR vision in addition to the visible and UV lighting. The proposed modification goes to replace the optical material of the movable lens by another with less thermal dispersion. The choice of appropriate materials lead to a good focus appeared on the retina for a wide spectral range includes UV, visible, and near IR lighting. Then, the performance of the modified design is verified through some optical measures for imaging quality determinations. These optical measures are determined with the aid of Zemax software, which also used for testing performance of the modified fisheye optical system. The analysis mainly focuses on the energy distribution in the light spot on the focal surface. The results show that the modified design of the fisheye is acceptable.展开更多
In order to analyze the fermentation properties of lactic acid bacteria in Chinese sauerkraut and to improve acid production, 21 samples of Chinese sauerkraut from Inner Mongolia and Northeast China were collected and...In order to analyze the fermentation properties of lactic acid bacteria in Chinese sauerkraut and to improve acid production, 21 samples of Chinese sauerkraut from Inner Mongolia and Northeast China were collected and isolated with a Man-Rogosa-Sharpe (MRS) culture. Sixteen strains of lactic acid bacteria were identified by combining both phenotype and genotype methods. After activation, the 16 strains were inoculated into the MRS medium with a concentration of 4% and then incubated at 37 ~C. The pH and the absorbance of the culture were mea- sured. The activated strains were then mutagenized in a field of 4 KV/cm mutation, with dosages administered within 20 minutes and 30 minutes, respectively. The variation curves of the pH and the absorbance of the culture were determined. The experimental results showed that the lactic acid bacteria isolated from the soup were identified as Lactobacillus and the acid production of the bacteria was signifi- cantly improved by the mutagenesis of the corona electric field.展开更多
The I-V characteristic of GaN-based p-i-n ultraviolet detector is presented. It is measured at different temperatures and analyzed with changing temperature. The ideality factor of the device is 2.09 at room temperatu...The I-V characteristic of GaN-based p-i-n ultraviolet detector is presented. It is measured at different temperatures and analyzed with changing temperature. The ideality factor of the device is 2.09 at room temperature. The maximum ideality factor is 2.14 at 100 ℃, which declines above 100 ℃, and the minimum ideality factor is 1.26 at 300 ℃. The coefficient of forward voltage vs. temperature is -1.97 mV/℃ with a forward current of 1 mA. Based on double injection model, the deep lying impurity activation energy in the i-region is 0.1 343 eV.展开更多
High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system u...High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low tem- perature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 lain is about 2.5 × 10.7 μA at the bias voltage of-1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.展开更多
A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires,where Ga droplets were utilized as the catalysts.The as-grown GaSb nanowires exhibited typical p-...A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires,where Ga droplets were utilized as the catalysts.The as-grown GaSb nanowires exhibited typical p-type semiconductor behavior with the calculated hole mobility of about 0.042 cm^2 V^-1 s^-1.The photoresponse properties of the GaSb nanowires were studied by fabricating nanowire photodetectors on both rigid and flexible substrates.The results revealed that the photodetectors exhibited broad spectral response ranging from ultraviolet,visible,to near-infrared region.For the device on rigid substrate,the corresponding responsivity and the detectivity were calculated to be 3.86×10^3 A W-1 and 3.15×10^13 Jones for 500 nm light,and 7.22×10^2 A W-1 and 5.90×10^12 Jones for 808 nm light,respectively,which were the highest value compared with those of other reported Ga1-xInxAsySb1-y structure nanowires.Besides,the flexible photodetectors not only maintained the comparable good photoresponse properties as the rigid one,but also possessed excellent mechanical flexibility and stability.This study could facilitate the understanding on the fundamental characteristics of self-catalyzed grown GaSb nanowires and the design of functional nano-optoelectronic devices based on GaSb nanowires.展开更多
As a lead-free perovskite,CsBi3I10 has attracted significant attention because of its high thermal tolerance and long electron diffusion length.Solution-processed high-performance CsBi3I10 perovskite devices,however,a...As a lead-free perovskite,CsBi3I10 has attracted significant attention because of its high thermal tolerance and long electron diffusion length.Solution-processed high-performance CsBi3I10 perovskite devices,however,are hindered by the formation of a two-dimensional structure,which results in an extremely high surface roughness and many pinholes.In this paper,we reported a space-confined growth(SCG)method using a single-layer polystyrene(PS)sphere template to obtain high-smoothness,high-crystallinity,and dense CsBi3I10 perovskite films.Compared with traditionally spin-coated CsBi3I10 photodetectors(PDs),the metal-semiconductor-metal PDs made by SCG showed a higher photocurrent,a lower dark current,and a bigger on/off ratio.In addition,the photocurrent of our unencapsulated CsBi3I10 perovskite PDs was not attenuated under long-time illumination.In addition,when the device was stored in air for 30 d,its performance also showed no degradation,demonstrating ultra-high stability.Furthermore,the synthesis was free of antisolvents,such as chlorobenzene and toluene,which is beneficial for the environmentally friendly assembly of the devices.Our strategy opens up a new way to prepare high-quality lead-free perovskite,which may be useful for applications in light-emitting diodes and solar cells.展开更多
An ultraviolet (UV)-visible tunable photodetec- tor based on ZnO nanorod arrays (NAs)/perovskite hetero- junction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method...An ultraviolet (UV)-visible tunable photodetec- tor based on ZnO nanorod arrays (NAs)/perovskite hetero- junction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method and an- nealed in different atmospheres. Based on solar cell structure perovskite photodetectors, it exhibited highly repeatable and stable photoelectric response characteristics. In addition, the devices with ZnO NAs annealed in a vacuum showed a high responsivity of about 1014 cm Hz1/2 W-1 in the visible region, whereas the devices with ZnO NAs annealed in air exhib- Red good detectivity in the UV region, especially at around 350 nm. Furthermore, when the annealing atmosphere of the ZnO nanorods was changed from vacuum to air, the domi- nant detection region of the photodetectors was altered from the visible to the ultraviolet region. These results enable po- tential applications of the ZnO NAs/perovskite photodetec- tors in ultraviolet and visible regions.展开更多
Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetect...Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.展开更多
A new type of ultraviolet photo-detectors (UVPDs) based on a bundle of highly aligned SiC nanowires was fabricated and the photo-electric properties of the UVPDs including 1-V characteristics and time response were ...A new type of ultraviolet photo-detectors (UVPDs) based on a bundle of highly aligned SiC nanowires was fabricated and the photo-electric properties of the UVPDs including 1-V characteristics and time response were studied in this work. SiC nan- owires were prepared by pyrolysis of a polymer precursor with ferrocene as the catalyst by a CVD route. The diameters of SiC nanowires varied from 100 to 200 nm while they were some centimeters long and the SiC nanowires were with zinc blended cubic form (β-SiC) tested by X-ray diffraction. A bundle of nanowires was fixed onto two legs' base by conductive silver paste to form the UVPDs. The electrical measurement of the device showed a significant increase of current when the device was exposed to 254 nm UV light, and the rising time of the device is very short, but the falling time is relatively long. Our results show that the UVPDs based on SiC nanowires have excellent electrical and optical properties which can be potentially applied.展开更多
A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system constr...A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system construct this novel FBG rain gauge. Sensing principle of this FBG rain gauge is explained in detail, and its theoretical calculation model is also established, which shows that the relationship between center wavelength of sensitive FBG and external rainfall has very good linearity. To verify its detection performance, the calibration experiment on one prototype of this FBG rain gauge is carried out. After experiment data analysis, the detection precision of this FBG rain gauge is 15.4/.tm which is almost two orders of magnitude higher than that of the existing rainfall measurement device. The experimental data confirm that this FBG rain gauge can achieve rainfall measurement with high precision.展开更多
Linearly bonded triiodide chains with fairly small distance between the adjacent iodine ions feature a facile electron transfer and highly anisotropic properties.Here,we demonstrate a novel strategy towards a new one-...Linearly bonded triiodide chains with fairly small distance between the adjacent iodine ions feature a facile electron transfer and highly anisotropic properties.Here,we demonstrate a novel strategy towards a new one-dimensional linear triiodide DMEDA·I6,using chain-type N,N'-dimethylethanediamine(DMEDA)cation to coordinate triiodine ions.This triiodide has the shortest distance between adjacent I3^- and good linearity.An estimated electronic band gap of1.36 e V indicates its semiconducting properties.100 fold differences both in polarization-sensitive absorption and effective mass were achieved by simulation,with directions parallel and perpendicular to the a-axis of DMEDA·I6.The DMEDA·I6 single crystal-based photodetectors show a good switching characteristic and a distinct polarization-sensitive photoresponse with linear dichroic photodetection ratio of about 1.9.Strongly anisotropic features and semiconducting properties of DMEDA·I6 make this triiodide system an interesting candidate for polarization related applications.展开更多
To develop the high-performance fluorescent bio-sensors, the metal nanoparticles were employed as nanoquenchers and at- tracted reasonable attention in the design of fluorescent biosensors. In this work, silver nanopa...To develop the high-performance fluorescent bio-sensors, the metal nanoparticles were employed as nanoquenchers and at- tracted reasonable attention in the design of fluorescent biosensors. In this work, silver nanoparticles (AgNPs) were obtained via reduction of Ag+ on FAM-labeled DNA template. For the tight binding between AgNPs and DNA, the tem- plate-synthesized AgNPs turned out high quenching efficiency and could be applied as super nanoquenchers to establish the biosensing platform for fluorescent detection. As an example, the template-synthesized DNA-AgNPs conjugates were em- ployed in sensing thiols. By forming S-Ag bonds, thiols interact intensely with AgNPs and replace the FAM-labeled DNA off from the surface of AgNPs, resulting in a fluorescence enhancement. Besides the advantages of lower background and higher signal-to-background ratio (S/B), the conjugates present better stability, making them applicable in complicated biological fluids. To further evidence the feasibility of sensing thiols in real samples, the thiols in human urine were detected. The total amount of free thiols found in human urine was ranging from 229 μM to 302μM with the proposed sensor. To conclude the reliability, low content of Cys was added and the recovery was 98%-103%.展开更多
基金Supported by The National Institute of Health Grants BRP CA103830 and RO1 EB007594
文摘Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in optical properties as well as imaging approaches that measures those changes.Wide-field imaging approaches include narrow-band imaging that measures changes in light scattering and absorption,and autofluorescence imaging that measure changes in endogenous fluorophores.High-resolution imaging approaches include optical coherence tomography,endocytoscopy,confocal microendoscopy,and high-resolution microendoscopy.These technologies,some coupled with an appropriate contrast agent,can measure differences in glandular morphology,nuclear morphology,or vascular alterations associated with neoplasia.Advances in targeted contrast agents are further discussed.Studies that have explored these technologies are highlighted;as are the advantages and limitations of each.
基金Supported by Singapore-China Joint R&D Project (No. 003/101/04)
文摘Based on the correlation between certain properties of liquid and the properties of the corresponding liquid drop formed under given conditions, a liquid drop measuring device is utilized to monitor the drop formation process of the liquid sample with photoelectric measuring methods. The mechanical and optical characteristic of the liquid is explored with the optical fibers from the internal of the liquid drop during its formation. The drop head capacitor is utilized to monitor the growth process of the liquid drop to gain the drop volume information related to the physical property of liquid. The unique liquid drop trace containing the integrated properties of liquid is generated, and it is proved by experiment that for different liquids their liquid drop traces are different. The analysis on liquid properties and discrimination between different liquids can be proceeded with the liquid drop trace obtained by the liquid drop measuring device.
文摘The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.
基金supported by National 863 Program of China(2013AA013401),P.R.ChinaNational Natural Science Foundation of China under Grant No.61177067,No.61027007,and No.61331010
文摘In optical performance monitoring system,the analog to digital converter is needed to detect the peak of nanosecond pulse and get the signal envelope.A scheme based on a designed anti-aliasing filter and analog to digital converter is proposed to broaden the nanosecond pulse and make it easier for the analog to digital converter to catch the peak of the nanosecond pulse.The experimental results demonstrate that,with the proposed scheme,the optical performance system needs less time to get the recovered eye-diagram of high speed optical data signal,and is robust to phase mismatch in the analog to digital converter circuit.
文摘Luster is one of the main factors in assessing fabric appearance. There are many different ways to definite and describe the luster, which result in disorder and discommodious in evaluation. Based on previous work, an apparatus suited for the measure of lustre is developed. Which performed measure the reflection distribution of fabrics automatically. Then the objective judgment can be given by the geniophotometric curve. Finally taking several kind of specimens for example give the results to prove the effectiveness of the device.
文摘A design for a fisheye optical system is modified in order to enable IR vision in addition to the visible and UV lighting. The proposed modification goes to replace the optical material of the movable lens by another with less thermal dispersion. The choice of appropriate materials lead to a good focus appeared on the retina for a wide spectral range includes UV, visible, and near IR lighting. Then, the performance of the modified design is verified through some optical measures for imaging quality determinations. These optical measures are determined with the aid of Zemax software, which also used for testing performance of the modified fisheye optical system. The analysis mainly focuses on the energy distribution in the light spot on the focal surface. The results show that the modified design of the fisheye is acceptable.
基金Supported by National Natural Science Foundation of China
文摘In order to analyze the fermentation properties of lactic acid bacteria in Chinese sauerkraut and to improve acid production, 21 samples of Chinese sauerkraut from Inner Mongolia and Northeast China were collected and isolated with a Man-Rogosa-Sharpe (MRS) culture. Sixteen strains of lactic acid bacteria were identified by combining both phenotype and genotype methods. After activation, the 16 strains were inoculated into the MRS medium with a concentration of 4% and then incubated at 37 ~C. The pH and the absorbance of the culture were mea- sured. The activated strains were then mutagenized in a field of 4 KV/cm mutation, with dosages administered within 20 minutes and 30 minutes, respectively. The variation curves of the pH and the absorbance of the culture were determined. The experimental results showed that the lactic acid bacteria isolated from the soup were identified as Lactobacillus and the acid production of the bacteria was signifi- cantly improved by the mutagenesis of the corona electric field.
文摘The I-V characteristic of GaN-based p-i-n ultraviolet detector is presented. It is measured at different temperatures and analyzed with changing temperature. The ideality factor of the device is 2.09 at room temperature. The maximum ideality factor is 2.14 at 100 ℃, which declines above 100 ℃, and the minimum ideality factor is 1.26 at 300 ℃. The coefficient of forward voltage vs. temperature is -1.97 mV/℃ with a forward current of 1 mA. Based on double injection model, the deep lying impurity activation energy in the i-region is 0.1 343 eV.
基金supported by the National Natural Science Foundation of China(Nos.61474094 and 61176092)
文摘High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low tem- perature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 lain is about 2.5 × 10.7 μA at the bias voltage of-1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.
基金supported by the National Natural Science Foundation of China (61574132 and 61625404)
文摘A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires,where Ga droplets were utilized as the catalysts.The as-grown GaSb nanowires exhibited typical p-type semiconductor behavior with the calculated hole mobility of about 0.042 cm^2 V^-1 s^-1.The photoresponse properties of the GaSb nanowires were studied by fabricating nanowire photodetectors on both rigid and flexible substrates.The results revealed that the photodetectors exhibited broad spectral response ranging from ultraviolet,visible,to near-infrared region.For the device on rigid substrate,the corresponding responsivity and the detectivity were calculated to be 3.86×10^3 A W-1 and 3.15×10^13 Jones for 500 nm light,and 7.22×10^2 A W-1 and 5.90×10^12 Jones for 808 nm light,respectively,which were the highest value compared with those of other reported Ga1-xInxAsySb1-y structure nanowires.Besides,the flexible photodetectors not only maintained the comparable good photoresponse properties as the rigid one,but also possessed excellent mechanical flexibility and stability.This study could facilitate the understanding on the fundamental characteristics of self-catalyzed grown GaSb nanowires and the design of functional nano-optoelectronic devices based on GaSb nanowires.
基金the National Natural Science Foundation of China(51972101 and 11874143)the Natural Science Foundation of Hubei Province(2019CFB508)Wuhan Yellow Crane Talent Program(2017-02)。
文摘As a lead-free perovskite,CsBi3I10 has attracted significant attention because of its high thermal tolerance and long electron diffusion length.Solution-processed high-performance CsBi3I10 perovskite devices,however,are hindered by the formation of a two-dimensional structure,which results in an extremely high surface roughness and many pinholes.In this paper,we reported a space-confined growth(SCG)method using a single-layer polystyrene(PS)sphere template to obtain high-smoothness,high-crystallinity,and dense CsBi3I10 perovskite films.Compared with traditionally spin-coated CsBi3I10 photodetectors(PDs),the metal-semiconductor-metal PDs made by SCG showed a higher photocurrent,a lower dark current,and a bigger on/off ratio.In addition,the photocurrent of our unencapsulated CsBi3I10 perovskite PDs was not attenuated under long-time illumination.In addition,when the device was stored in air for 30 d,its performance also showed no degradation,demonstrating ultra-high stability.Furthermore,the synthesis was free of antisolvents,such as chlorobenzene and toluene,which is beneficial for the environmentally friendly assembly of the devices.Our strategy opens up a new way to prepare high-quality lead-free perovskite,which may be useful for applications in light-emitting diodes and solar cells.
基金supported by the National Nature Science Foundation of China (51372075)
文摘An ultraviolet (UV)-visible tunable photodetec- tor based on ZnO nanorod arrays (NAs)/perovskite hetero- junction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method and an- nealed in different atmospheres. Based on solar cell structure perovskite photodetectors, it exhibited highly repeatable and stable photoelectric response characteristics. In addition, the devices with ZnO NAs annealed in a vacuum showed a high responsivity of about 1014 cm Hz1/2 W-1 in the visible region, whereas the devices with ZnO NAs annealed in air exhib- Red good detectivity in the UV region, especially at around 350 nm. Furthermore, when the annealing atmosphere of the ZnO nanorods was changed from vacuum to air, the domi- nant detection region of the photodetectors was altered from the visible to the ultraviolet region. These results enable po- tential applications of the ZnO NAs/perovskite photodetec- tors in ultraviolet and visible regions.
基金funded by the National Natural Science Foundation of China (U1432249)the National Key R&D Program of China (2017YFA0205002)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology and Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)
文摘Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.
基金the National Natural Science Foundation of China (Grant No. 11104348)the School Pre-research of National University of Defense Technology (Grant No. JC11-02-08) for the financial support to this work
文摘A new type of ultraviolet photo-detectors (UVPDs) based on a bundle of highly aligned SiC nanowires was fabricated and the photo-electric properties of the UVPDs including 1-V characteristics and time response were studied in this work. SiC nan- owires were prepared by pyrolysis of a polymer precursor with ferrocene as the catalyst by a CVD route. The diameters of SiC nanowires varied from 100 to 200 nm while they were some centimeters long and the SiC nanowires were with zinc blended cubic form (β-SiC) tested by X-ray diffraction. A bundle of nanowires was fixed onto two legs' base by conductive silver paste to form the UVPDs. The electrical measurement of the device showed a significant increase of current when the device was exposed to 254 nm UV light, and the rising time of the device is very short, but the falling time is relatively long. Our results show that the UVPDs based on SiC nanowires have excellent electrical and optical properties which can be potentially applied.
文摘A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system construct this novel FBG rain gauge. Sensing principle of this FBG rain gauge is explained in detail, and its theoretical calculation model is also established, which shows that the relationship between center wavelength of sensitive FBG and external rainfall has very good linearity. To verify its detection performance, the calibration experiment on one prototype of this FBG rain gauge is carried out. After experiment data analysis, the detection precision of this FBG rain gauge is 15.4/.tm which is almost two orders of magnitude higher than that of the existing rainfall measurement device. The experimental data confirm that this FBG rain gauge can achieve rainfall measurement with high precision.
基金financially supported by the National Natural Science Foundation of China (51761145048, 61725401 and 61704097)the Innovation Fund of WNLO and the 62th China Postdoctoral Science Foundation (2017M622418)
文摘Linearly bonded triiodide chains with fairly small distance between the adjacent iodine ions feature a facile electron transfer and highly anisotropic properties.Here,we demonstrate a novel strategy towards a new one-dimensional linear triiodide DMEDA·I6,using chain-type N,N'-dimethylethanediamine(DMEDA)cation to coordinate triiodine ions.This triiodide has the shortest distance between adjacent I3^- and good linearity.An estimated electronic band gap of1.36 e V indicates its semiconducting properties.100 fold differences both in polarization-sensitive absorption and effective mass were achieved by simulation,with directions parallel and perpendicular to the a-axis of DMEDA·I6.The DMEDA·I6 single crystal-based photodetectors show a good switching characteristic and a distinct polarization-sensitive photoresponse with linear dichroic photodetection ratio of about 1.9.Strongly anisotropic features and semiconducting properties of DMEDA·I6 make this triiodide system an interesting candidate for polarization related applications.
基金supported by the National Natural Foundation of China (21075032 & 21005026)National Key Basic Research Program (2011CB911000)Hunan Province Key Project of Scientific & Tech-nical Programs (2010TP4013-1)
文摘To develop the high-performance fluorescent bio-sensors, the metal nanoparticles were employed as nanoquenchers and at- tracted reasonable attention in the design of fluorescent biosensors. In this work, silver nanoparticles (AgNPs) were obtained via reduction of Ag+ on FAM-labeled DNA template. For the tight binding between AgNPs and DNA, the tem- plate-synthesized AgNPs turned out high quenching efficiency and could be applied as super nanoquenchers to establish the biosensing platform for fluorescent detection. As an example, the template-synthesized DNA-AgNPs conjugates were em- ployed in sensing thiols. By forming S-Ag bonds, thiols interact intensely with AgNPs and replace the FAM-labeled DNA off from the surface of AgNPs, resulting in a fluorescence enhancement. Besides the advantages of lower background and higher signal-to-background ratio (S/B), the conjugates present better stability, making them applicable in complicated biological fluids. To further evidence the feasibility of sensing thiols in real samples, the thiols in human urine were detected. The total amount of free thiols found in human urine was ranging from 229 μM to 302μM with the proposed sensor. To conclude the reliability, low content of Cys was added and the recovery was 98%-103%.