Filtration processes are worldwide used for sterilizing solutions and substrates. Filtration seems to induce the formation of aqueous nanostructures. The aim of this work was to verify the influence of filtration proc...Filtration processes are worldwide used for sterilizing solutions and substrates. Filtration seems to induce the formation of aqueous nanostructures. The aim of this work was to verify the influence of filtration processes on water structure detected by spectral variations in NIR region. Samples of ultrapure water (MilliQ-Millipore, Vimodrone, Milan, Italy) before and after iterated filtrations were analyzed. NIR spectra were collected in transmission mode in the whole NIR range, by using NIRFIex N500 spectrometer at constant temperature (40 ± 1 ℃). NIR data were processed using Unscrambler software v. 9.2 in evaluating qualitative differences between filtered and not filtered samples. The information related to possible solvent physical stresses were highlighted in the range 6500-7500 cm^-1. The shifts observed were ascribable to a different distribution of the number of water molecules involved in hydrogen bonds in filtered and not filtered water samples, at constant temperature. NIR spectroscopy, commonly used to study relationship between spectral changes and hydrogen bonds in water at increasing temperature values, was applied to evaluate effects of filtration processes on water structure. The obtained results are in agreement with literature data and allowed the improvement of the knowledge about pure water characteristics when some mechanical perturbations are applied.展开更多
文摘Filtration processes are worldwide used for sterilizing solutions and substrates. Filtration seems to induce the formation of aqueous nanostructures. The aim of this work was to verify the influence of filtration processes on water structure detected by spectral variations in NIR region. Samples of ultrapure water (MilliQ-Millipore, Vimodrone, Milan, Italy) before and after iterated filtrations were analyzed. NIR spectra were collected in transmission mode in the whole NIR range, by using NIRFIex N500 spectrometer at constant temperature (40 ± 1 ℃). NIR data were processed using Unscrambler software v. 9.2 in evaluating qualitative differences between filtered and not filtered samples. The information related to possible solvent physical stresses were highlighted in the range 6500-7500 cm^-1. The shifts observed were ascribable to a different distribution of the number of water molecules involved in hydrogen bonds in filtered and not filtered water samples, at constant temperature. NIR spectroscopy, commonly used to study relationship between spectral changes and hydrogen bonds in water at increasing temperature values, was applied to evaluate effects of filtration processes on water structure. The obtained results are in agreement with literature data and allowed the improvement of the knowledge about pure water characteristics when some mechanical perturbations are applied.