Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement me...Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement mechanism and energy consumption. However, the possible reasons of sampling disturbance, machining error and so on often lead to the scattering of test results, and bring ultimate difficulty for forming general test conclusion. Based on the stochastic finite element method, the uncertain parameters of specimen density ps, specimen radius Rs, specimen elastic modulus Es and specimen length Ls in the data processing of SHPB test were considered, and the correlation between the parameters and the test results was analyzed. The results show that the specimen radius Rs has direct correlation with the test result, improving the accuracy in preparing and measuring of specimen is an effective way to improve the accuracy of test and minish the scattering of results for SHPB test.展开更多
Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing ...Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000–2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies(SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current dif ferences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient dif ferences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA diff erence. However, reconstructed ITFcaused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.展开更多
Variance analysis, correlation analysis and regression analysis methods are applied to analyze the variation of circulation at 500 hPa. In winter, there are three regions (180°E – 150°W, 45°N – 60...Variance analysis, correlation analysis and regression analysis methods are applied to analyze the variation of circulation at 500 hPa. In winter, there are three regions (180°E – 150°W, 45°N – 60°N, 70°W – 100 °W,45°N – 75°N, 60°E – 100°E, 65°N – 80°N) whose variations are strong. Those regions are the key regions in which atmospheric circulation can change. Those regions are correlated to some teleconnections and can present a part of variations of 500 hPa to some degree. The linear contemporary correlation between those regions and the height at 500 hPa is significant. Those regions can account for 88 % of variations of concurrent height at 500 hPa. Those regions can present and forecast some variations to some degree in March and April. The longer the time interval, the worse the forecast effect will be. The interannual variations of Q1, Q2 and the SST are weak in the western Pacific.展开更多
The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The e...The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The experimental data were correlated with two equations,a modified Antoine equation with the dissolved salt taken into account and a nonrandom two liquid-electrolyte(e-NRTL)model.Both models are in good agreement with the experimental data.This study provides essential physical data for further investigation of vapor-liquid equilibrium system containing salt.展开更多
Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water+acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor ph...Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water+acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids(NRTL) model.The Root Mean Square Deviation(RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.展开更多
July 25, 2014 / Accepted: August 18, 2014 / Published: November 25, 2014 Abstract: This paper presents the measurement results of a l1/2 stage LPT (low pressure turbine) test rig at Graz University of Technology ...July 25, 2014 / Accepted: August 18, 2014 / Published: November 25, 2014 Abstract: This paper presents the measurement results of a l1/2 stage LPT (low pressure turbine) test rig at Graz University of Technology incorporating two different rotor geometries: one with a regular blade loading and the other with a highly loaded blade geometry. The test rig was designed in cooperation with MTU Aero Engines and represented the last 1.5 stages of a commercial aero engine. Considerable efforts were put on the adjustment of all relevant model parameters (Mach number, blade count ratio, airfoil aspect ratio, blade loading, etc.) to reproduce the full scale LPT situation. The rig diameter is approximately half of that of a commercial aero engine LPT. The number of blades and vanes for the two investigated stages as well as the pressure ratio and power output are identical, resulting in a decrease in rotational speed of the HSL (high stage loading) rotor. Measurement data from a FRAPP (fast response pressure probe) is used to compare the flow fields of the two different stages. The effect of the different stage designs can be seen when comparing the exit flow fields. The highly loaded stage shows a more pronounced tip leakage vortex compared to the datum stage. The highly loaded stage shows wider wakes with a lower total pressure deficit. The fluctuations of total pressure within the flow field are directly related to the upstream wake. If the measurement position is located within a stator wake, the fluctuations are significantly smaller than that out of the wake.展开更多
The binary vapor–liquid equilibrium data of CO_2 in diethylene glycol(monomethyl,monoethyl,monobutyl,dimethyl,diethyl,dibutyl)ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constan...The binary vapor–liquid equilibrium data of CO_2 in diethylene glycol(monomethyl,monoethyl,monobutyl,dimethyl,diethyl,dibutyl)ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constant-volume method.It was found by contrast that the ether group in solvents can promote the CO_2 absorption,but the hydroxyl group will inhibit the CO_2 absorption.Furthermore,the solubilities of CO_2 showed an upward trend with the increasing molecular lengths of absorbents.The experimental data were also correlated with a modified Patel–Teja equation of state(PT EOS)combined with the traditional van der Waals one-fluid mixing rules and the results showed a satisfactory agreement between the model and the experimental data.展开更多
Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence predicti...Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence prediction scheme for cognitive radio networks with multiple spectrum bands to decrease the spectrum sensing time and increase the throughput of secondary users. The scheme is based on recent advances in computational learning theory, which has shown that prediction is synonymous with data compression. A Ziv-Lempel data compression algorithm is used to design our spectrum sensing sequence prediction scheme. The spectrum band usage history is used for the prediction in our proposed scheme. Simulation results show that the proposed scheme can reduce the average sensing time and improve the system throughput significantly.展开更多
Two-phase flow distributions in the merged pipe distributor have still remained mal-uniformity problem and the causes have not clearly discovered yet. Therefore, the enhancement study is needed, absolutely. The experi...Two-phase flow distributions in the merged pipe distributor have still remained mal-uniformity problem and the causes have not clearly discovered yet. Therefore, the enhancement study is needed, absolutely. The experimental was carried out upon the distributor constructed by acrylics resembling merged triple pipe, 8 mm in diameter of inlet channel and two set 5 mm in diameter of each outlet channel, set horizontally sideways. Three flow patterns were fed, i.e., bubble, slug and stratified flow, observed via high speed video camera. The pressure distribution was measured by series of U-tube water gauge manometer. The flow patterns, phase distribution and pressure drop were analyzed by CFD software, validated by experimental data and compared by existing correlation, analytically. The experiment is extended by modeling, in order to vary three inclinations of distributor: horizontally, 45° and vertically up-ward as well as to vary three outlet channel lengths with length ratio lc/dc: 3.2, 10 and 70. It was revealed that the two-phase flow distribution tends to be mal-uniform and to transform to different flow pattern in outlet channels. These are promoted by different: outlet channel length, feeding two-phase flow pattern in inlet distributor and inclination angle. The changing of flow pattern is driven by fluctuating velocity in both upper and lower outlet channel.展开更多
In absorption cycles,ionic liquid(IL)1,3-dimethylimidazolium tetrafluoroborate([Dmim]BF4)may be a promising absorbent of working pair using water as refrigerant.The vapor pressures of[Dmim]BF4 aqueous solution were me...In absorption cycles,ionic liquid(IL)1,3-dimethylimidazolium tetrafluoroborate([Dmim]BF4)may be a promising absorbent of working pair using water as refrigerant.The vapor pressures of[Dmim]BF4 aqueous solution were measured with the boiling-point method in the temperature range from 312.25 to 403.60 K and in the mass concentration range of 65%to 90%of[Dmim]BF4.The experimental data were correlated with an Antoine-type equation and the Non-Random Two-Liquid(NRTL)model,and the average absolute deviations between the experimental and calculated values were 1.06%and 1.15%,respectively.For the[Dmim]BF4 aqueous solution,the experimental vapor pressures show negative deviations from the calculated data with Raoult's law.For higher mass concentration of the IL,the deviation is more negative.In addition,the vapor pressures,the hydrophilicity and the solubility of[Dmim]BF4 aqueous solutions were compared with those of[Dmim]Cl aqueous solutions and [Bmim]BF4 aqueous solutions at IL-mole fraction of 0.20.展开更多
In hot deformation, the flow stress curves of steels always present as two typical types: at relatively high temperature and low strain rate, the flow stress may first increase and then attain a steady value without r...In hot deformation, the flow stress curves of steels always present as two typical types: at relatively high temperature and low strain rate, the flow stress may first increase and then attain a steady value without reaching an obvious peak stress; in other situations, the flow stress decreases after reaching peak stress and then attains a steady value. A new phenomenological model,described by a sine-function equation, is proposed to define the relationship between flow stress and deformation parameters. A series of isothermal compressions for a carbon steel were carried out, as a case study, to obtain basic experimental data.Parameters of the new model were sequentially determined. The predicted results of the proposed model were compared with actual measured data. Good accuracy was found in the standard statistical parameters of correlation coefficient, root mean square error, and average absolute relative error with the values of 0.935, 7.137 MPa and 4.352%, respectively. Discussion of applications of different models in finite-element simulation demonstrated the benefit of the new model. When comparing the simulation results of three different deformation patterns with large strain, the new model showed 10%–20% lower predicted forming load than the original Arrhenius equation, and better applicability and reliability than modified Arrhenius equations.展开更多
This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the ...This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the elastic and plastic zones around the cavity and a plain strain condition during the cavity expansion process. The solutions for the limit pressure, stress, and excess pore pressure were obtained by introducing the anisotropic initial stress coefficient K_0 into the conventional cylindrical cavity expansion method.The proposed solutions were then used to interpret the piezocone penetration test, and the suitability of the solutions was verified by comparing the prediction with the piezocone penetration test data. Subsequently, parametric studies were carried out to investigate the influence of stress anisotropy on the stress, excess pores pressure distributions around an expanding cylindrical cavity, and limit pressure. The results show that the proposed cylindrical cavity expansion method under stress anisotropy is suitable and can be used to investigate the piezocone cone test. The present work improves upon the conventional theoretical framework of cavity expansion and can be applied to the determination of the stresses around axially loaded piles and around in-situ testing devices such as penetrometers.展开更多
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金Projects(50490274, 50534030) supported by the National Natural Science Foundation of ChinaProject supported by the Natural Science Foundatin of Hunan Province, China
文摘Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement mechanism and energy consumption. However, the possible reasons of sampling disturbance, machining error and so on often lead to the scattering of test results, and bring ultimate difficulty for forming general test conclusion. Based on the stochastic finite element method, the uncertain parameters of specimen density ps, specimen radius Rs, specimen elastic modulus Es and specimen length Ls in the data processing of SHPB test were considered, and the correlation between the parameters and the test results was analyzed. The results show that the specimen radius Rs has direct correlation with the test result, improving the accuracy in preparing and measuring of specimen is an effective way to improve the accuracy of test and minish the scattering of results for SHPB test.
基金Supported by the National Natural Science Foundation of China(No.41206018)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)+4 种基金the Chinese Academy of Sciences(No.XDA11010203)to WANG Jingthe Chinese Academy of Sciences(No.XDA11010301)the National Basic Research Program of China(973 Program)(No.2012CB956001)the Specialized Scientific Research Project for Public Welfare Industries(Meteorology)(No.GYHY201306018)the State Oceanic Administration of China(No.GASI-03-01-01-05)to YUAN Dongliang
文摘Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000–2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies(SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current dif ferences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient dif ferences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA diff erence. However, reconstructed ITFcaused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.
基金Key foundation project of Yunnan province (2003D00142) Natural Science Foundation of China (40065001)
文摘Variance analysis, correlation analysis and regression analysis methods are applied to analyze the variation of circulation at 500 hPa. In winter, there are three regions (180°E – 150°W, 45°N – 60°N, 70°W – 100 °W,45°N – 75°N, 60°E – 100°E, 65°N – 80°N) whose variations are strong. Those regions are the key regions in which atmospheric circulation can change. Those regions are correlated to some teleconnections and can present a part of variations of 500 hPa to some degree. The linear contemporary correlation between those regions and the height at 500 hPa is significant. Those regions can account for 88 % of variations of concurrent height at 500 hPa. Those regions can present and forecast some variations to some degree in March and April. The longer the time interval, the worse the forecast effect will be. The interannual variations of Q1, Q2 and the SST are weak in the western Pacific.
文摘The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The experimental data were correlated with two equations,a modified Antoine equation with the dissolved salt taken into account and a nonrandom two liquid-electrolyte(e-NRTL)model.Both models are in good agreement with the experimental data.This study provides essential physical data for further investigation of vapor-liquid equilibrium system containing salt.
基金Supported by the National Natural Science Foundation of China (21176049) and the Natural Science Foundation of Fujian Province (2012J01034).
文摘Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water+acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids(NRTL) model.The Root Mean Square Deviation(RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.
文摘July 25, 2014 / Accepted: August 18, 2014 / Published: November 25, 2014 Abstract: This paper presents the measurement results of a l1/2 stage LPT (low pressure turbine) test rig at Graz University of Technology incorporating two different rotor geometries: one with a regular blade loading and the other with a highly loaded blade geometry. The test rig was designed in cooperation with MTU Aero Engines and represented the last 1.5 stages of a commercial aero engine. Considerable efforts were put on the adjustment of all relevant model parameters (Mach number, blade count ratio, airfoil aspect ratio, blade loading, etc.) to reproduce the full scale LPT situation. The rig diameter is approximately half of that of a commercial aero engine LPT. The number of blades and vanes for the two investigated stages as well as the pressure ratio and power output are identical, resulting in a decrease in rotational speed of the HSL (high stage loading) rotor. Measurement data from a FRAPP (fast response pressure probe) is used to compare the flow fields of the two different stages. The effect of the different stage designs can be seen when comparing the exit flow fields. The highly loaded stage shows a more pronounced tip leakage vortex compared to the datum stage. The highly loaded stage shows wider wakes with a lower total pressure deficit. The fluctuations of total pressure within the flow field are directly related to the upstream wake. If the measurement position is located within a stator wake, the fluctuations are significantly smaller than that out of the wake.
基金the National Natural Science Foundation of China(21306088)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A01,Tsinghua University,China)the Priority Academic Program Development of Jiangsu Higher Education Institutions(China)
文摘The binary vapor–liquid equilibrium data of CO_2 in diethylene glycol(monomethyl,monoethyl,monobutyl,dimethyl,diethyl,dibutyl)ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constant-volume method.It was found by contrast that the ether group in solvents can promote the CO_2 absorption,but the hydroxyl group will inhibit the CO_2 absorption.Furthermore,the solubilities of CO_2 showed an upward trend with the increasing molecular lengths of absorbents.The experimental data were also correlated with a modified Patel–Teja equation of state(PT EOS)combined with the traditional van der Waals one-fluid mixing rules and the results showed a satisfactory agreement between the model and the experimental data.
基金Supported by the National Natural Science Foundation of China(No.60832009), the Natural Science Foundation of Beijing (No.4102044) and the National Nature Science Foundation for Young Scholars of China (No.61001115)
文摘Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence prediction scheme for cognitive radio networks with multiple spectrum bands to decrease the spectrum sensing time and increase the throughput of secondary users. The scheme is based on recent advances in computational learning theory, which has shown that prediction is synonymous with data compression. A Ziv-Lempel data compression algorithm is used to design our spectrum sensing sequence prediction scheme. The spectrum band usage history is used for the prediction in our proposed scheme. Simulation results show that the proposed scheme can reduce the average sensing time and improve the system throughput significantly.
文摘Two-phase flow distributions in the merged pipe distributor have still remained mal-uniformity problem and the causes have not clearly discovered yet. Therefore, the enhancement study is needed, absolutely. The experimental was carried out upon the distributor constructed by acrylics resembling merged triple pipe, 8 mm in diameter of inlet channel and two set 5 mm in diameter of each outlet channel, set horizontally sideways. Three flow patterns were fed, i.e., bubble, slug and stratified flow, observed via high speed video camera. The pressure distribution was measured by series of U-tube water gauge manometer. The flow patterns, phase distribution and pressure drop were analyzed by CFD software, validated by experimental data and compared by existing correlation, analytically. The experiment is extended by modeling, in order to vary three inclinations of distributor: horizontally, 45° and vertically up-ward as well as to vary three outlet channel lengths with length ratio lc/dc: 3.2, 10 and 70. It was revealed that the two-phase flow distribution tends to be mal-uniform and to transform to different flow pattern in outlet channels. These are promoted by different: outlet channel length, feeding two-phase flow pattern in inlet distributor and inclination angle. The changing of flow pattern is driven by fluctuating velocity in both upper and lower outlet channel.
基金Supported by the National Natural Science Foundation of China(50890184)the National Basic Research Program of China(2010CB227304)
文摘In absorption cycles,ionic liquid(IL)1,3-dimethylimidazolium tetrafluoroborate([Dmim]BF4)may be a promising absorbent of working pair using water as refrigerant.The vapor pressures of[Dmim]BF4 aqueous solution were measured with the boiling-point method in the temperature range from 312.25 to 403.60 K and in the mass concentration range of 65%to 90%of[Dmim]BF4.The experimental data were correlated with an Antoine-type equation and the Non-Random Two-Liquid(NRTL)model,and the average absolute deviations between the experimental and calculated values were 1.06%and 1.15%,respectively.For the[Dmim]BF4 aqueous solution,the experimental vapor pressures show negative deviations from the calculated data with Raoult's law.For higher mass concentration of the IL,the deviation is more negative.In addition,the vapor pressures,the hydrophilicity and the solubility of[Dmim]BF4 aqueous solutions were compared with those of[Dmim]Cl aqueous solutions and [Bmim]BF4 aqueous solutions at IL-mole fraction of 0.20.
基金supported by the National Natural Science Foundation of China(Grant No.51475294)
文摘In hot deformation, the flow stress curves of steels always present as two typical types: at relatively high temperature and low strain rate, the flow stress may first increase and then attain a steady value without reaching an obvious peak stress; in other situations, the flow stress decreases after reaching peak stress and then attains a steady value. A new phenomenological model,described by a sine-function equation, is proposed to define the relationship between flow stress and deformation parameters. A series of isothermal compressions for a carbon steel were carried out, as a case study, to obtain basic experimental data.Parameters of the new model were sequentially determined. The predicted results of the proposed model were compared with actual measured data. Good accuracy was found in the standard statistical parameters of correlation coefficient, root mean square error, and average absolute relative error with the values of 0.935, 7.137 MPa and 4.352%, respectively. Discussion of applications of different models in finite-element simulation demonstrated the benefit of the new model. When comparing the simulation results of three different deformation patterns with large strain, the new model showed 10%–20% lower predicted forming load than the original Arrhenius equation, and better applicability and reliability than modified Arrhenius equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.51420105013&51708063)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK1713)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2017jcyjAX0261)
文摘This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the elastic and plastic zones around the cavity and a plain strain condition during the cavity expansion process. The solutions for the limit pressure, stress, and excess pore pressure were obtained by introducing the anisotropic initial stress coefficient K_0 into the conventional cylindrical cavity expansion method.The proposed solutions were then used to interpret the piezocone penetration test, and the suitability of the solutions was verified by comparing the prediction with the piezocone penetration test data. Subsequently, parametric studies were carried out to investigate the influence of stress anisotropy on the stress, excess pores pressure distributions around an expanding cylindrical cavity, and limit pressure. The results show that the proposed cylindrical cavity expansion method under stress anisotropy is suitable and can be used to investigate the piezocone cone test. The present work improves upon the conventional theoretical framework of cavity expansion and can be applied to the determination of the stresses around axially loaded piles and around in-situ testing devices such as penetrometers.