期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
高血压调查中血压测定的质量控制 被引量:1
1
作者 俞志红 洪建英 《心脑血管病防治》 2004年第5期54-55,共2页
关键词 高血 质量控制 测压环境 最高充气
下载PDF
若干高血压诊治的新概念释义
2
作者 刘勇 《中国全科医学》 CAS CSCD 2002年第8期669-670,共2页
关键词 方法 测压环境 诊断 高血
下载PDF
Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis
3
作者 Jianxiong Zhu Zhongda Sun +3 位作者 Jikai Xu Rafal D.Walczak Jan ADziuban Chengkuo Lee 《Science Bulletin》 SCIE EI CSCD 2021年第12期1176-1185,M0003,共11页
Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fastresponse gas-monitoring systems.However,the conventional plasma discharge system is bulky,operates at a high temper... Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fastresponse gas-monitoring systems.However,the conventional plasma discharge system is bulky,operates at a high temperature,and inappropriate for volatile organic compounds(VOCs)concentration detection.Therefore,we report a machine learning(ML)-enhanced ion mobility analyzer with a triboelectric-based ionizer,which offers good ion mobility selectivity and VOC recognition ability with a small-sized device and non-strict operating environment.Based on the charge accumulation mechanism,a multi-switched manipulation triboelectric nanogenerator(SM-TENG)can provide a direct current(DC)bias at the order of a few hundred,which can be further leveraged as the power source to obtain a unique and repeatable discharge characteristic of different VOCs,and their mixtures,with a special tip-plate electrode configuration.Aiming to tackle the grand challenge in the detection of multiple VOCs,the ML-enhanced ion mobility analysis method was successfully demonstrated by extracting specific features automatically from ion mobility spectrometry data with ML algorithms,which significantly enhance the detection ability of the SM-TENG based VOC analyzer,showing a portable real-time VOC monitoring solution with rapid response and low power consumption for future internet of things based environmental monitoring applications. 展开更多
关键词 Machine learning Volatile organic compounds Ion mobility Triboelectric nanogenerator Plasma discharge
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部