Driving facial animation based on tens of tracked markers is a challenging task due to the complex topology and to the non-rigid nature of human faces. We propose a solution named manifold Bayesian regression. First a...Driving facial animation based on tens of tracked markers is a challenging task due to the complex topology and to the non-rigid nature of human faces. We propose a solution named manifold Bayesian regression. First a novel distance metric, the geodesic manifold distance, is introduced to replace the Euclidean distance. The problem of facial animation can be formulated as a sparse warping kernels regression problem, in which the geodesic manifold distance is used for modelling the topology and discontinuities of the face models. The geodesic manifold distance can be adopted in traditional regression methods, e.g. radial basis functions without much tuning. We put facial animation into the framework of Bayesian regression. Bayesian approaches provide an elegant way of dealing with noise and uncertainty. After the covariance matrix is properly modulated, Hybrid Monte Carlo is used to approximate the integration of probabilities and get deformation results. The experimental results showed that our algorithm can robustly produce facial animation with large motions and complex face models.展开更多
A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational ...A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models.展开更多
A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOV...A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.展开更多
The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of paralle...The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure.展开更多
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by...During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.展开更多
To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac...To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.展开更多
When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the ...When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them.展开更多
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d...Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism.展开更多
This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testi...This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the data point deletion model is equivalent to the mean shift model for the semiparametric regression model.Finally,with one simulative computing example,some helpful conclusions are drawn.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60272031), the National Basic Research Program (973) of China (No. 2002CB312101) and the Technology Plan Program of Zhejiang Province (No. 2003C21010), China
文摘Driving facial animation based on tens of tracked markers is a challenging task due to the complex topology and to the non-rigid nature of human faces. We propose a solution named manifold Bayesian regression. First a novel distance metric, the geodesic manifold distance, is introduced to replace the Euclidean distance. The problem of facial animation can be formulated as a sparse warping kernels regression problem, in which the geodesic manifold distance is used for modelling the topology and discontinuities of the face models. The geodesic manifold distance can be adopted in traditional regression methods, e.g. radial basis functions without much tuning. We put facial animation into the framework of Bayesian regression. Bayesian approaches provide an elegant way of dealing with noise and uncertainty. After the covariance matrix is properly modulated, Hybrid Monte Carlo is used to approximate the integration of probabilities and get deformation results. The experimental results showed that our algorithm can robustly produce facial animation with large motions and complex face models.
基金supported by the special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200906018)the National Basic Research Program of China (Grant Nos. 2010CB950304 and 2009CB421406)the Knowl-edge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-QN202)
文摘A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models.
基金supported by the National Natural Science Foundation of China under Grants No.61173100,No.61173101the Fundamental Research Funds for the Central Universities under Grant No.DUT10RW202
文摘A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.
基金Supported by the National Natural Science Foundation of China (No. 60873235&60473099)the Science-Technology Development Key Project of Jilin Province of China (No. 20080318)the Program of New Century Excellent Talents in University of China (No. NCET-06-0300).
文摘The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure.
文摘During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.
基金Projects(51375222,51175242)supported by the National Natural Science Foundation of China
文摘To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.
文摘When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them.
文摘Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism.
基金Supported by the National Natural Science Foundation of China (No. 40604001),the National High Technology Research and Development Program of China (No. 2007AA12Z312).Acknowledgement The authors thank Prof. Tao Benzao and Prof. Wang Xingzhou for several helpful suggestions during the preparation of this manuscript.
文摘This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the data point deletion model is equivalent to the mean shift model for the semiparametric regression model.Finally,with one simulative computing example,some helpful conclusions are drawn.