Based on the analysis of several objective functions,a new method was proposed.Firstly,the feature of the inclination curve was analyzed.On this basis,the soil could be divided into several blocks with different displ...Based on the analysis of several objective functions,a new method was proposed.Firstly,the feature of the inclination curve was analyzed.On this basis,the soil could be divided into several blocks with different displacements and deformations.Then,the method of the soil division was presented,and the characteristic of single soil block was studied.The displacement of the block had two components:sliding and deformation.Moreover,a new objective function was constructed according to the deformation of the soil block.Finally,the sensitivities of the objective functions by traditional method and the new method were calculated,respectively.The result shows that the new objective function is more sensitive to mechanical parameters and the inversion result is close to that obtained by the large direct shear apparatus.So,this method can be used in slope back analysis and its effectiveness is proved.展开更多
The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e w...The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e with data on climate, topography, soil characteristic, irrigation condition, f ertilizer application, and special socioeconomic activities has been developed a nd used for the evaluation of land productivity for different crops by integrati ng with a crop growth model-the erosion productivity impact calculator (EPIC). International food policy simulation model (IFPSIM) is also embedded into GIS fo r the predictions of how crop demands and crop market prices will change under a lternative policy scenarios. An inference engine (IE) including land use choice model is developed to illustrate land use choice behavior based on logit models , which allows to analyze how diversified factors ranging from climate changes, crop price changes to land management changes can affect the distribution of agr icultural land use. A test for integrated simulation is taken in each 0.1° by 0.1° grid cell to predict the change of agricultural land use types at globa l level. Global land use changes are simulated from 1992 to 2050.展开更多
Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is ...Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.展开更多
Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional r...Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.展开更多
This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the ...This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the elastic and plastic zones around the cavity and a plain strain condition during the cavity expansion process. The solutions for the limit pressure, stress, and excess pore pressure were obtained by introducing the anisotropic initial stress coefficient K_0 into the conventional cylindrical cavity expansion method.The proposed solutions were then used to interpret the piezocone penetration test, and the suitability of the solutions was verified by comparing the prediction with the piezocone penetration test data. Subsequently, parametric studies were carried out to investigate the influence of stress anisotropy on the stress, excess pores pressure distributions around an expanding cylindrical cavity, and limit pressure. The results show that the proposed cylindrical cavity expansion method under stress anisotropy is suitable and can be used to investigate the piezocone cone test. The present work improves upon the conventional theoretical framework of cavity expansion and can be applied to the determination of the stresses around axially loaded piles and around in-situ testing devices such as penetrometers.展开更多
Soil moisture has been considered as one of the main indicators that are widely used in the fields of hydrology, climate, ecology and others. The land surface temperature-vegetation index (LST-VI) space has comprehe...Soil moisture has been considered as one of the main indicators that are widely used in the fields of hydrology, climate, ecology and others. The land surface temperature-vegetation index (LST-VI) space has comprehensive information of the sensor from the visible to thermal infrared band and can well reflect the regional soil moisture conditions. In this study, 9 pairs of moderate-resolution imaging spectroradiometer (MODIS) products (MOD09A1 and MODllA2), covering 5 provinces in Southwest China, were chosen to construct the LST-VI space, and then the spatial distribution of soil moisture in 5 provinces of Southwest China was monitored by the temperature vegetation dryness index (TVDI). Three LST-VI spaces were constructed by normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and modified soil-adjusted vegetation index (MSAVI), respectively. The correlations between the soil moisture data from 98 sites and the 3 TVDIs calculated by LST-NDVI, LST-EVI and LST-MSAVI, respectively, were analyzed. The results showed that TVDI was a useful parameter for soil surface moisture conditions. The TVDI calculated from the LST-EVI space (TVDIE) revealed a better correlation with soil moisture than those calculated from the LST-NDVI and LST-MSAVI spaces. From the different stages of the TVDIE space, it is concluded that TVDIE can effectively show the temporal and spatial differences of soil moisture, and is an effective approach to monitor soil moisture condition.展开更多
Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate c...Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate change mitigation. There are well-established process-based models that can be used to simulate SOC stock evolution; however, there are few plant residue C input values and those that exist represent a limited range of environments. This limitation in a fundamental model component (i.e., C input) constrains the reliability of current SOC stock simulations. This study aimed to estimate crop-specific and environment-specific plant-derived soil C input values for agricultural sites in France based on data from 700 sites selected from a recently established French soil monitoring network (the RMQS database). Measured SOC stock values from this large scale soil database were used to constrain an inverse RothC modelling approach to derive estimated C input values consistent with the stocks. This approach allowed us to estimate significant crop-specific C input values (P 〈 0.05) for 14 out of 17 crop types in the range from 1.84 =h 0.69 t C ha-1 year-1 (silage corn) to 5.15 =k 0.12 t C ha-1 year-1 (grassland/pasture). Furthermore, the incorporation of climate variables improved the predictions. C input of 4 crop types could be predicted as a function of temperature and 8 as a function of precipitation. This study offered an approach to meet the urgent need for crop-specific and environment-specific C input values in order to improve the reliability of SOC stock prediction.展开更多
基金Projects(2013CB036004,2011CB710601)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of ChinaProject(CX2011B096)supported by Hunan Provincial Postgraduate Innovation Program,China
文摘Based on the analysis of several objective functions,a new method was proposed.Firstly,the feature of the inclination curve was analyzed.On this basis,the soil could be divided into several blocks with different displacements and deformations.Then,the method of the soil division was presented,and the characteristic of single soil block was studied.The displacement of the block had two components:sliding and deformation.Moreover,a new objective function was constructed according to the deformation of the soil block.Finally,the sensitivities of the objective functions by traditional method and the new method were calculated,respectively.The result shows that the new objective function is more sensitive to mechanical parameters and the inversion result is close to that obtained by the large direct shear apparatus.So,this method can be used in slope back analysis and its effectiveness is proved.
文摘The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e with data on climate, topography, soil characteristic, irrigation condition, f ertilizer application, and special socioeconomic activities has been developed a nd used for the evaluation of land productivity for different crops by integrati ng with a crop growth model-the erosion productivity impact calculator (EPIC). International food policy simulation model (IFPSIM) is also embedded into GIS fo r the predictions of how crop demands and crop market prices will change under a lternative policy scenarios. An inference engine (IE) including land use choice model is developed to illustrate land use choice behavior based on logit models , which allows to analyze how diversified factors ranging from climate changes, crop price changes to land management changes can affect the distribution of agr icultural land use. A test for integrated simulation is taken in each 0.1° by 0.1° grid cell to predict the change of agricultural land use types at globa l level. Global land use changes are simulated from 1992 to 2050.
基金Supported by the International Foundation for Science,Stockholm,Sweden (No.C/3402-1)
文摘Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.
基金funded by the Special Research Fund for Seismology(201408020)the Natural Science Foundation of China (51578514,U1434210)
文摘Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.
基金supported by the National Natural Science Foundation of China(Grant Nos.51420105013&51708063)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK1713)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2017jcyjAX0261)
文摘This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the elastic and plastic zones around the cavity and a plain strain condition during the cavity expansion process. The solutions for the limit pressure, stress, and excess pore pressure were obtained by introducing the anisotropic initial stress coefficient K_0 into the conventional cylindrical cavity expansion method.The proposed solutions were then used to interpret the piezocone penetration test, and the suitability of the solutions was verified by comparing the prediction with the piezocone penetration test data. Subsequently, parametric studies were carried out to investigate the influence of stress anisotropy on the stress, excess pores pressure distributions around an expanding cylindrical cavity, and limit pressure. The results show that the proposed cylindrical cavity expansion method under stress anisotropy is suitable and can be used to investigate the piezocone cone test. The present work improves upon the conventional theoretical framework of cavity expansion and can be applied to the determination of the stresses around axially loaded piles and around in-situ testing devices such as penetrometers.
基金Supported by the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China during the 12th Five-Year Plan Period(Nos.2011BAD32B01 and 2012BAH29B02)
文摘Soil moisture has been considered as one of the main indicators that are widely used in the fields of hydrology, climate, ecology and others. The land surface temperature-vegetation index (LST-VI) space has comprehensive information of the sensor from the visible to thermal infrared band and can well reflect the regional soil moisture conditions. In this study, 9 pairs of moderate-resolution imaging spectroradiometer (MODIS) products (MOD09A1 and MODllA2), covering 5 provinces in Southwest China, were chosen to construct the LST-VI space, and then the spatial distribution of soil moisture in 5 provinces of Southwest China was monitored by the temperature vegetation dryness index (TVDI). Three LST-VI spaces were constructed by normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and modified soil-adjusted vegetation index (MSAVI), respectively. The correlations between the soil moisture data from 98 sites and the 3 TVDIs calculated by LST-NDVI, LST-EVI and LST-MSAVI, respectively, were analyzed. The results showed that TVDI was a useful parameter for soil surface moisture conditions. The TVDI calculated from the LST-EVI space (TVDIE) revealed a better correlation with soil moisture than those calculated from the LST-NDVI and LST-MSAVI spaces. From the different stages of the TVDIE space, it is concluded that TVDIE can effectively show the temporal and spatial differences of soil moisture, and is an effective approach to monitor soil moisture condition.
基金Supported by the Soil Scientific Interest Group (GIS Sol) of Francefinanced by the "Groupement d'Intrêt Scientifique Sol". Jeroen Meersmans' postdoctoral position was funded by the French Environment and Energy Management Agency (ADEME)funded by the EU projects "Greenhouse gas management in European land use systems (GHG-Europe)" (FP7-ENV-2009-1-244122) and "CARBO-Extreme" (FP7-ENV-2008-1-226701)
文摘Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate change mitigation. There are well-established process-based models that can be used to simulate SOC stock evolution; however, there are few plant residue C input values and those that exist represent a limited range of environments. This limitation in a fundamental model component (i.e., C input) constrains the reliability of current SOC stock simulations. This study aimed to estimate crop-specific and environment-specific plant-derived soil C input values for agricultural sites in France based on data from 700 sites selected from a recently established French soil monitoring network (the RMQS database). Measured SOC stock values from this large scale soil database were used to constrain an inverse RothC modelling approach to derive estimated C input values consistent with the stocks. This approach allowed us to estimate significant crop-specific C input values (P 〈 0.05) for 14 out of 17 crop types in the range from 1.84 =h 0.69 t C ha-1 year-1 (silage corn) to 5.15 =k 0.12 t C ha-1 year-1 (grassland/pasture). Furthermore, the incorporation of climate variables improved the predictions. C input of 4 crop types could be predicted as a function of temperature and 8 as a function of precipitation. This study offered an approach to meet the urgent need for crop-specific and environment-specific C input values in order to improve the reliability of SOC stock prediction.