The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrai...The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.展开更多
The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e w...The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e with data on climate, topography, soil characteristic, irrigation condition, f ertilizer application, and special socioeconomic activities has been developed a nd used for the evaluation of land productivity for different crops by integrati ng with a crop growth model-the erosion productivity impact calculator (EPIC). International food policy simulation model (IFPSIM) is also embedded into GIS fo r the predictions of how crop demands and crop market prices will change under a lternative policy scenarios. An inference engine (IE) including land use choice model is developed to illustrate land use choice behavior based on logit models , which allows to analyze how diversified factors ranging from climate changes, crop price changes to land management changes can affect the distribution of agr icultural land use. A test for integrated simulation is taken in each 0.1° by 0.1° grid cell to predict the change of agricultural land use types at globa l level. Global land use changes are simulated from 1992 to 2050.展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is ...Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.展开更多
When topography and low velocity zone differences vary greatly, conventional vertical static time shifts will cause wavefield distortion and influence wave equation seismic imaging for seismic data acquired on a compl...When topography and low velocity zone differences vary greatly, conventional vertical static time shifts will cause wavefield distortion and influence wave equation seismic imaging for seismic data acquired on a complex near surface. In this paper, we propose an approach to datum correction that combines a joint tomography inversion with wavefield continuation to solve the static problem for seismic data on rugged acquisition topography. First, the near surface model is obtained by refracted wave tomography inversion. Second, the wavefield of sources and receivers are continued downward and upward to accomplish datum correction starting from a flat surface and locating the datum above topography. Based on the reciprocal theorem, Huygens' and Fresnel principles, the location of sources and receivers, and regarding the recorded data on the surface as a secondary emission, the sources and receivers are upward-continued to the datum above topography respectively. Thus, the datum correction using joint tomography inversion and wavefield continuation with the condition of a complex near surface is accomplished.展开更多
Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't b...Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't be effectively used for solving convertedwave statics problems. This has become the main obstacle to breakthroughs in convertedwave data processing. To improve converted-wave static corrections, first, a statics method based on the common-receiver-point (CRP) stack is used for the initial receiver static correction to enhance the coherency of the CRP stack. Second, a stack-power-maximization static correction which improves the continuity of the CCP stack is used for detailed receiver statics. Finally, a non-surface-consistent residual moveout correction of the CCP gathers is used to enhance the stack power of reflection signals from different depths. Converted-wave statics are solved by the joint use of the three correction methods.展开更多
Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the ch...Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.展开更多
This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The nor...This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The northern part of the Shaanxi province in China was taken as a case. Multi-temporal remotely sensed materials of both Landsat TM and thematic maps (ETM+) were used as the bases to provide comprehensive views of surface conditions such as vegetation cover and salinization detection. With ERDAS ver. 9.1 software, the Normalized Differential Salinity Index (NDSl) and Salinity Index (S.I.) were computed and then evaluated for land degradation by salinization. Arc/Info ver. 9.2 software was used along with field observation data (GPS) for analysis. Using spatial analysis methods, results showed that 19 973.1 km^2 (72%) of land had no risk of land degradation by salinization, 3 684.7 km^2 (13%) had slight land degradation by salinization risk, 2 797.9 km^2 (10%) had moderate land degradation by salinization risk, and 1 218.9 km^2 (4%) of the total land area was at a high risk of land degradation by salinization. The study area, in general, is exposed to a high risk of soil salinization.展开更多
Driving facial animation based on tens of tracked markers is a challenging task due to the complex topology and to the non-rigid nature of human faces. We propose a solution named manifold Bayesian regression. First a...Driving facial animation based on tens of tracked markers is a challenging task due to the complex topology and to the non-rigid nature of human faces. We propose a solution named manifold Bayesian regression. First a novel distance metric, the geodesic manifold distance, is introduced to replace the Euclidean distance. The problem of facial animation can be formulated as a sparse warping kernels regression problem, in which the geodesic manifold distance is used for modelling the topology and discontinuities of the face models. The geodesic manifold distance can be adopted in traditional regression methods, e.g. radial basis functions without much tuning. We put facial animation into the framework of Bayesian regression. Bayesian approaches provide an elegant way of dealing with noise and uncertainty. After the covariance matrix is properly modulated, Hybrid Monte Carlo is used to approximate the integration of probabilities and get deformation results. The experimental results showed that our algorithm can robustly produce facial animation with large motions and complex face models.展开更多
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he...Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.展开更多
Research into the characteristics of geothermal fields is important for the control of heat damage in mines. Based on measured geothermal data of boreholes from 200 m to 1200 m in a Jiahe Coal Mine, we demonstrate non...Research into the characteristics of geothermal fields is important for the control of heat damage in mines. Based on measured geothermal data of boreholes from 200 m to 1200 m in a Jiahe Coal Mine, we demonstrate non-linear but increasing relations of both geo-temperatures and geothermal gradients with increases depth. Numerically, we fitted the relationship between geo-temperatures and depth, a first-order exponential decay curve, formulated as: T(h) = 4.975 + 23.08 exp(h/1736.1).展开更多
The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of ...The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.展开更多
Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are ...Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are the most difficult problems for constructing the system. Based on the current 3D GIS technique, some basic problems in establishing the system are discussed in this paper, including 3D spatial data model, 3D geological modeling, and visu- alization of 3D geological data. A kind of 3D vector data model based on boundary representation for geological object and its topology was developed in order to model and visualize complex geological structures. In addition, some key techniques are pointed out for further study.展开更多
To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing b...To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.展开更多
This paper focuses on the integration and data transformation between GPS and totalstation.It emphasizes on the way to transfer the WGS84 Cartesian coordinates to the local two_dimensional plane coordinates and the or...This paper focuses on the integration and data transformation between GPS and totalstation.It emphasizes on the way to transfer the WGS84 Cartesian coordinates to the local two_dimensional plane coordinates and the orthometric height GPS receiver,totalstation,radio,notebook computer and the corresponding software work together to form a new surveying system,the super_totalstation positioning system(SPS) and a new surveying model for terrestrial surveying.With the help of this system,the positions of detail points can be measured.展开更多
This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the mod...This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while the later estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively. We found that GLCM mean texture features showed markedly strong correlations with stem volume and biomass.展开更多
To better understand the crustal deformation of the South China Sea Basin, we produce a mechanically consistent 2-dimensional model for observing regional velocity field in the South China Sea (SCS). We studied the do...To better understand the crustal deformation of the South China Sea Basin, we produce a mechanically consistent 2-dimensional model for observing regional velocity field in the South China Sea (SCS). We studied the dominating regional tectonic stress field by geodetic measurements and finite element analysis, the spatial variations of velocity field and strain field, and relative movements among different blocks, using a 2-dimensional model describing crustal deformation of the South China Sea Basin. Strain results show that the SCS is extending at present. The western part of SCS is opening gradually in NW- SE direction from its northern margin to the south, but the eastern part of SCS is opening gradually from its central part to the north and south. In addition, we analyzed the plate kinematics to the deformation of the SCS, using a two-dimensional finite element model. Our simulations results are well explained by available geodetic data. The movement of SCS is resulted from interactions among Indian Plate, Pacific Plate, Philippine Sea Plate, and Eurasian Plate.展开更多
It has taken more than a hundred years for seismic observations in the Philippines to evolve to a modern observation system. The responsibility of seismic observations was likewise transferred from one agency to anoth...It has taken more than a hundred years for seismic observations in the Philippines to evolve to a modern observation system. The responsibility of seismic observations was likewise transferred from one agency to another during this same period of time. At present, the mandate of conducting seismic observations in the Philippines rests with the Philippine Institute of Volcanology and Seismology (PHIVOLCS). In 2000, through a grant aid from the Japan International Cooperation Agency (JICA), the Philippine seismic network was upgraded to a digital system. As a result, a new set of seismic monitoring equipments was installed in all of the 34 PHIVOLCS seismic stations all over the country. Digital waveforms are now available for high level seismic data processing, and data acquisition and processing are now automated. Included in the upgrade is the provision of strong motion accelerographs in all stations whose data can now be used for studying ground motion and intensity attenuation relations. The new setup is now producing high-resolution data that can now be used for conducting basic seismological researches. Earthquake locations have now improved allowing for the modeling and delineation of earthquake source regions necessary for earthquake hazard studies. Current seismic hazard studies in the Philippines involve the estimation of ground motion using both probabilistic and deterministic approaches, seismic microzonation studies of key cities using microtremor observations, paleoseismology and active faults mapping, and identification of liquefaction-prone, landslide-prone and tsunami-affected areas. The earthquake database is now being reviewed and completed with the addition of historical events and from data from regional databases. While studies of seismic hazards were primarily concentrated on a regional level, PHIVOLCS is now focusing on doing these seismic hazard studies on a microlevel. For Metro Manila, first generation hazard maps showing ground rupture, ground shaking and liquefaction hazards have recently been completed. Other large cities that are also at risk from large earthquakes are the next targets. The elements at risk such as population, lifelines, and vertical and horizontal structures for each of these urban centers are also being incorporated in the hazard maps for immediate use of planners, civil defense officials, policy-makers and engineers. The maps can also now be used to describe possible scenarios during times of strong events and how appropriate socio-economic and engineering responses could be designed. In addition, a rapid earthquake damage assessment system has been started which will attempt to produce immediate or rapid assessments including identification of elements at risk during times of strong earthquakes.展开更多
基金Supported by the National Natural Science Foundation of China (No.40671158), the National 863 Program of China(No.2006AA12Z224) and the Program for New Century Excellent Talents in University (No.NCET-05-0626).
文摘The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.
文摘The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e with data on climate, topography, soil characteristic, irrigation condition, f ertilizer application, and special socioeconomic activities has been developed a nd used for the evaluation of land productivity for different crops by integrati ng with a crop growth model-the erosion productivity impact calculator (EPIC). International food policy simulation model (IFPSIM) is also embedded into GIS fo r the predictions of how crop demands and crop market prices will change under a lternative policy scenarios. An inference engine (IE) including land use choice model is developed to illustrate land use choice behavior based on logit models , which allows to analyze how diversified factors ranging from climate changes, crop price changes to land management changes can affect the distribution of agr icultural land use. A test for integrated simulation is taken in each 0.1° by 0.1° grid cell to predict the change of agricultural land use types at globa l level. Global land use changes are simulated from 1992 to 2050.
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金Supported by the International Foundation for Science,Stockholm,Sweden (No.C/3402-1)
文摘Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.
基金the National Development and Innovation Committee Program (2005) 2372the National High-tech R&D Program (863 Program) 2006AA06Z241 of ChinaYouth Innovation Fund of CNPC’ Prestack Imaging Integral Study for Complex near Surface.
文摘When topography and low velocity zone differences vary greatly, conventional vertical static time shifts will cause wavefield distortion and influence wave equation seismic imaging for seismic data acquired on a complex near surface. In this paper, we propose an approach to datum correction that combines a joint tomography inversion with wavefield continuation to solve the static problem for seismic data on rugged acquisition topography. First, the near surface model is obtained by refracted wave tomography inversion. Second, the wavefield of sources and receivers are continued downward and upward to accomplish datum correction starting from a flat surface and locating the datum above topography. Based on the reciprocal theorem, Huygens' and Fresnel principles, the location of sources and receivers, and regarding the recorded data on the surface as a secondary emission, the sources and receivers are upward-continued to the datum above topography respectively. Thus, the datum correction using joint tomography inversion and wavefield continuation with the condition of a complex near surface is accomplished.
文摘Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't be effectively used for solving convertedwave statics problems. This has become the main obstacle to breakthroughs in convertedwave data processing. To improve converted-wave static corrections, first, a statics method based on the common-receiver-point (CRP) stack is used for the initial receiver static correction to enhance the coherency of the CRP stack. Second, a stack-power-maximization static correction which improves the continuity of the CCP stack is used for detailed receiver statics. Finally, a non-surface-consistent residual moveout correction of the CCP gathers is used to enhance the stack power of reflection signals from different depths. Converted-wave statics are solved by the joint use of the three correction methods.
基金the Natural Science Foundation of China(41176077)Subject of 973(2009CB219505)+2 种基金Natural Science Foundation of Shandong(ZR2010DM012)Basic Research Special Foundation of the Third Institute of Oceanography affiliated to the State Oceanic Administration(TIOSOA,2009004)the Science Research Project for the South China Sea of Ocean University of China for their financial support to this work
文摘Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.
基金the Geo-information Science and Technology Program (No. IRT 0438)
文摘This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The northern part of the Shaanxi province in China was taken as a case. Multi-temporal remotely sensed materials of both Landsat TM and thematic maps (ETM+) were used as the bases to provide comprehensive views of surface conditions such as vegetation cover and salinization detection. With ERDAS ver. 9.1 software, the Normalized Differential Salinity Index (NDSl) and Salinity Index (S.I.) were computed and then evaluated for land degradation by salinization. Arc/Info ver. 9.2 software was used along with field observation data (GPS) for analysis. Using spatial analysis methods, results showed that 19 973.1 km^2 (72%) of land had no risk of land degradation by salinization, 3 684.7 km^2 (13%) had slight land degradation by salinization risk, 2 797.9 km^2 (10%) had moderate land degradation by salinization risk, and 1 218.9 km^2 (4%) of the total land area was at a high risk of land degradation by salinization. The study area, in general, is exposed to a high risk of soil salinization.
基金Project supported by the National Natural Science Foundation of China (No. 60272031), the National Basic Research Program (973) of China (No. 2002CB312101) and the Technology Plan Program of Zhejiang Province (No. 2003C21010), China
文摘Driving facial animation based on tens of tracked markers is a challenging task due to the complex topology and to the non-rigid nature of human faces. We propose a solution named manifold Bayesian regression. First a novel distance metric, the geodesic manifold distance, is introduced to replace the Euclidean distance. The problem of facial animation can be formulated as a sparse warping kernels regression problem, in which the geodesic manifold distance is used for modelling the topology and discontinuities of the face models. The geodesic manifold distance can be adopted in traditional regression methods, e.g. radial basis functions without much tuning. We put facial animation into the framework of Bayesian regression. Bayesian approaches provide an elegant way of dealing with noise and uncertainty. After the covariance matrix is properly modulated, Hybrid Monte Carlo is used to approximate the integration of probabilities and get deformation results. The experimental results showed that our algorithm can robustly produce facial animation with large motions and complex face models.
基金support for this study was provided by the National Natural Science Foundation of China (No.40776006)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060423009)the Science and Technology Development Program of Shandong Province (Grant No.2008GGB01099)
文摘Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.
基金Financial support for this project,provided by the National Basic Research Program of China (No.2006CB202200)the Key Project of National Natural Science Foundation of China+1 种基金the Program for Changjiang Scholars,Innovative Research Team in University of China (No.IRT0656)the Fundamental Research Funds for the Central Universities (No.2010QL04)
文摘Research into the characteristics of geothermal fields is important for the control of heat damage in mines. Based on measured geothermal data of boreholes from 200 m to 1200 m in a Jiahe Coal Mine, we demonstrate non-linear but increasing relations of both geo-temperatures and geothermal gradients with increases depth. Numerically, we fitted the relationship between geo-temperatures and depth, a first-order exponential decay curve, formulated as: T(h) = 4.975 + 23.08 exp(h/1736.1).
基金Supported by Chinese National Special Project (Nos. 908-01-I-ST03 and 908-01-BC12)National Key Basic Research Program of China (No. G2005CB422302)+1 种基金National Natural Science Foundation of China (No.40776019)Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-BR-15)
文摘The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.
基金Project 2001AA135170 supported by the National High-Tech Research and Development 863 Program of China
文摘Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are the most difficult problems for constructing the system. Based on the current 3D GIS technique, some basic problems in establishing the system are discussed in this paper, including 3D spatial data model, 3D geological modeling, and visu- alization of 3D geological data. A kind of 3D vector data model based on boundary representation for geological object and its topology was developed in order to model and visualize complex geological structures. In addition, some key techniques are pointed out for further study.
基金Sponsored by the National Natural Science Foundation of China(Grant No. NSFC-60572010)
文摘To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.
文摘This paper focuses on the integration and data transformation between GPS and totalstation.It emphasizes on the way to transfer the WGS84 Cartesian coordinates to the local two_dimensional plane coordinates and the orthometric height GPS receiver,totalstation,radio,notebook computer and the corresponding software work together to form a new surveying system,the super_totalstation positioning system(SPS) and a new surveying model for terrestrial surveying.With the help of this system,the positions of detail points can be measured.
文摘This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while the later estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively. We found that GLCM mean texture features showed markedly strong correlations with stem volume and biomass.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2007cb411702)
文摘To better understand the crustal deformation of the South China Sea Basin, we produce a mechanically consistent 2-dimensional model for observing regional velocity field in the South China Sea (SCS). We studied the dominating regional tectonic stress field by geodetic measurements and finite element analysis, the spatial variations of velocity field and strain field, and relative movements among different blocks, using a 2-dimensional model describing crustal deformation of the South China Sea Basin. Strain results show that the SCS is extending at present. The western part of SCS is opening gradually in NW- SE direction from its northern margin to the south, but the eastern part of SCS is opening gradually from its central part to the north and south. In addition, we analyzed the plate kinematics to the deformation of the SCS, using a two-dimensional finite element model. Our simulations results are well explained by available geodetic data. The movement of SCS is resulted from interactions among Indian Plate, Pacific Plate, Philippine Sea Plate, and Eurasian Plate.
文摘It has taken more than a hundred years for seismic observations in the Philippines to evolve to a modern observation system. The responsibility of seismic observations was likewise transferred from one agency to another during this same period of time. At present, the mandate of conducting seismic observations in the Philippines rests with the Philippine Institute of Volcanology and Seismology (PHIVOLCS). In 2000, through a grant aid from the Japan International Cooperation Agency (JICA), the Philippine seismic network was upgraded to a digital system. As a result, a new set of seismic monitoring equipments was installed in all of the 34 PHIVOLCS seismic stations all over the country. Digital waveforms are now available for high level seismic data processing, and data acquisition and processing are now automated. Included in the upgrade is the provision of strong motion accelerographs in all stations whose data can now be used for studying ground motion and intensity attenuation relations. The new setup is now producing high-resolution data that can now be used for conducting basic seismological researches. Earthquake locations have now improved allowing for the modeling and delineation of earthquake source regions necessary for earthquake hazard studies. Current seismic hazard studies in the Philippines involve the estimation of ground motion using both probabilistic and deterministic approaches, seismic microzonation studies of key cities using microtremor observations, paleoseismology and active faults mapping, and identification of liquefaction-prone, landslide-prone and tsunami-affected areas. The earthquake database is now being reviewed and completed with the addition of historical events and from data from regional databases. While studies of seismic hazards were primarily concentrated on a regional level, PHIVOLCS is now focusing on doing these seismic hazard studies on a microlevel. For Metro Manila, first generation hazard maps showing ground rupture, ground shaking and liquefaction hazards have recently been completed. Other large cities that are also at risk from large earthquakes are the next targets. The elements at risk such as population, lifelines, and vertical and horizontal structures for each of these urban centers are also being incorporated in the hazard maps for immediate use of planners, civil defense officials, policy-makers and engineers. The maps can also now be used to describe possible scenarios during times of strong events and how appropriate socio-economic and engineering responses could be designed. In addition, a rapid earthquake damage assessment system has been started which will attempt to produce immediate or rapid assessments including identification of elements at risk during times of strong earthquakes.