Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ...Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.展开更多
For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading o...For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.展开更多
The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-...The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.展开更多
In this study, the position of all major rill and gully erosion sites were located using hand held GPS (Global Positioning System) receiver during reconnaissance surveys. Based on severity rating and geopolitical co...In this study, the position of all major rill and gully erosion sites were located using hand held GPS (Global Positioning System) receiver during reconnaissance surveys. Based on severity rating and geopolitical considerations, six of the erosion gully sites were selected for monitoring. Control points were established around each of the gully sites using three Leica 500 dual frequency GPS receivers by method of DGPS (differential GPS) surveys. Detailed topographical survey of the gully sites was carried out using total stations. With the aid of SPOT satellite imageries in combination with total station data and GIS (geographic information system) location maps, contoured maps along with DEM (digital elevation model) were generated using ARCGIS 9.2 software. The morphological parameters of the gullies including depth, width, length and area of the gullies were determined. Volumetric estimate of the amount of soil loss from gully erosion was also carried out. Soil samples were recovered from the gully sites to determine their erodibility and other parameters to be used for soil loss modeling. The result of the studies was used as an indicator for determining the gully initiation point. Slope-area relationship and threshold of gully initiation was established. The minimum volume of soil loss occurred in gully No. 2 (Queen Ede). The minimum AS^2 value was 345 while the maximum was 3,267.展开更多
Rhodes is one of the most forested islands of Greece, in the Prefecture of Dodecanese, in southeast of Aegean Sea. The island in recent times has been struck by big and devastating fires. After 1993, the local Forest ...Rhodes is one of the most forested islands of Greece, in the Prefecture of Dodecanese, in southeast of Aegean Sea. The island in recent times has been struck by big and devastating fires. After 1993, the local Forest Service and the local political authority have adopted a new prevention and suppression system relied on the fast fire detection and suppression at its initial stages. By the present research, comparing the results of 1993-2006 (a time span when the above method was applied) with the results of the immediately precedent equal time of 1978-1992, was made certain that the firefighting system applied after 1993 had very good results irrespective from the primary agency in charge of extinguishing the forest fires. Among others, it was made clear that, during the period that this method was applied, a much less area was burnt per year than the period before the application in spite of the fact that in the same period (1993-2006) there has been a significant increase of forest fires. It is also estimated that the economic damage occurred in the first period (1978-1992) on average was 12.4 times per year higher compared to the second period (1993-2006).展开更多
A model for performance prediction of multistage centrifugal compressor is proposed. The model allows the users to predict the compressor performance, e.g. pressure ratio, efficiency and losses using the compressor ge...A model for performance prediction of multistage centrifugal compressor is proposed. The model allows the users to predict the compressor performance, e.g. pressure ratio, efficiency and losses using the compressor geometric information and speed by a stage stacking calculation based on the characteristics of each stage. To develop the compressor elemental stage charac- teristics, the compressor losses, such as incidence losses and friction losses, are mathematically modeled. For a composite sys- tems, for instance a gas turbine power plant, the performance of the multistage centrifugal compressor can be evaluated. Since some important parameters of the compressor model, e.g., the slip factor or, shock loss coefficient (and reference diameter DI, are hard to be determined by empirical laws, a genetic algorithm (GA) is used to solve the parameter estimation problem of the proposed model, and in turn the compressor performance analysis and parameters study are performed. The surge line for the multistage centrifugal compressor can also be determined from the simulation results. Furthermore, the model presented here provides a valuable tool for evaluating the multistage centrifugal compressor performance as a function of various operation parameters.展开更多
基金supported by the National Natural Science Foundation of China (No.51975293)Aeronautical Science Foundation of China (No.2019ZD052010)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20230502)。
文摘Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.
文摘For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.
基金Supported by the National High Technology Research and Development Program of China (2006AA04Z176)
文摘The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.
文摘In this study, the position of all major rill and gully erosion sites were located using hand held GPS (Global Positioning System) receiver during reconnaissance surveys. Based on severity rating and geopolitical considerations, six of the erosion gully sites were selected for monitoring. Control points were established around each of the gully sites using three Leica 500 dual frequency GPS receivers by method of DGPS (differential GPS) surveys. Detailed topographical survey of the gully sites was carried out using total stations. With the aid of SPOT satellite imageries in combination with total station data and GIS (geographic information system) location maps, contoured maps along with DEM (digital elevation model) were generated using ARCGIS 9.2 software. The morphological parameters of the gullies including depth, width, length and area of the gullies were determined. Volumetric estimate of the amount of soil loss from gully erosion was also carried out. Soil samples were recovered from the gully sites to determine their erodibility and other parameters to be used for soil loss modeling. The result of the studies was used as an indicator for determining the gully initiation point. Slope-area relationship and threshold of gully initiation was established. The minimum volume of soil loss occurred in gully No. 2 (Queen Ede). The minimum AS^2 value was 345 while the maximum was 3,267.
文摘Rhodes is one of the most forested islands of Greece, in the Prefecture of Dodecanese, in southeast of Aegean Sea. The island in recent times has been struck by big and devastating fires. After 1993, the local Forest Service and the local political authority have adopted a new prevention and suppression system relied on the fast fire detection and suppression at its initial stages. By the present research, comparing the results of 1993-2006 (a time span when the above method was applied) with the results of the immediately precedent equal time of 1978-1992, was made certain that the firefighting system applied after 1993 had very good results irrespective from the primary agency in charge of extinguishing the forest fires. Among others, it was made clear that, during the period that this method was applied, a much less area was burnt per year than the period before the application in spite of the fact that in the same period (1993-2006) there has been a significant increase of forest fires. It is also estimated that the economic damage occurred in the first period (1978-1992) on average was 12.4 times per year higher compared to the second period (1993-2006).
基金supported by the National Natural Science Foundation of China (Grant Nos. 61174130,61004083,61074074)the National Basic Research Program of China ("973" Program) (Grant No.2009CB320601)Fundamental Research Funds for the Central Universities (Grant No. N100604008)
文摘A model for performance prediction of multistage centrifugal compressor is proposed. The model allows the users to predict the compressor performance, e.g. pressure ratio, efficiency and losses using the compressor geometric information and speed by a stage stacking calculation based on the characteristics of each stage. To develop the compressor elemental stage charac- teristics, the compressor losses, such as incidence losses and friction losses, are mathematically modeled. For a composite sys- tems, for instance a gas turbine power plant, the performance of the multistage centrifugal compressor can be evaluated. Since some important parameters of the compressor model, e.g., the slip factor or, shock loss coefficient (and reference diameter DI, are hard to be determined by empirical laws, a genetic algorithm (GA) is used to solve the parameter estimation problem of the proposed model, and in turn the compressor performance analysis and parameters study are performed. The surge line for the multistage centrifugal compressor can also be determined from the simulation results. Furthermore, the model presented here provides a valuable tool for evaluating the multistage centrifugal compressor performance as a function of various operation parameters.