Paraoxonase-1 (PON1) is an esterase and lactonase synthesized by the liver and found in the circulation associated with high-density lipoproteins. The physiological function of PON1 seems to be to degrade specific oxi...Paraoxonase-1 (PON1) is an esterase and lactonase synthesized by the liver and found in the circulation associated with high-density lipoproteins. The physiological function of PON1 seems to be to degrade specific oxidized cholesteryl esters and oxidized phospholipids in lipoproteins and cell membranes. PON1 is, therefore, an antioxidant enzyme. Alterations in circulating PON1 levels have been reported in a variety of diseases involving oxidative stress including chronic liver diseases. Measurement of serum PON1 activity has been proposed as a potential test for the evaluation of liver function. However, this measurement is still restricted to research and has not been extensively applied in routine clinical chemistry laboratories. The reason for this restriction is due to the problem that the substrate commonly used for PON1 measurement, paraoxon, is toxic and unstable. The recent development of new assays with non-toxic substrates makes this proposal closer to a practical development. The present editorial summarizes PON1 biochemistry and function, its involvement with chronic liver impairment, and some aspects related to the measurement of PON1 activity in circulation.展开更多
We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kagome lattice,we show that the chiral flux phase has the low...We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kagome lattice,we show that the chiral flux phase has the lowest energy among those states which exhibit 2×2 charge orders observed experimentally.This state breaks the time-reversal symmetry and displays anomalous Hall effect.The explicit pattern of the density of state in real space is calculated.These results are supported by recent experiments and suggest that these materials are new platforms to investigate the interplay between topology,superconductivity and electron–electron correlations.展开更多
基金Supported by Fondo de Investigación Sanitaria,FIS 00/0232,02/0430, 05/1607the Instituto de Salud Carlos Ⅲ, C03/02,C03/08,G03/015the Generalitat de Catalunya,FI 05/00068
文摘Paraoxonase-1 (PON1) is an esterase and lactonase synthesized by the liver and found in the circulation associated with high-density lipoproteins. The physiological function of PON1 seems to be to degrade specific oxidized cholesteryl esters and oxidized phospholipids in lipoproteins and cell membranes. PON1 is, therefore, an antioxidant enzyme. Alterations in circulating PON1 levels have been reported in a variety of diseases involving oxidative stress including chronic liver diseases. Measurement of serum PON1 activity has been proposed as a potential test for the evaluation of liver function. However, this measurement is still restricted to research and has not been extensively applied in routine clinical chemistry laboratories. The reason for this restriction is due to the problem that the substrate commonly used for PON1 measurement, paraoxon, is toxic and unstable. The recent development of new assays with non-toxic substrates makes this proposal closer to a practical development. The present editorial summarizes PON1 biochemistry and function, its involvement with chronic liver impairment, and some aspects related to the measurement of PON1 activity in circulation.
基金supported by the National Program on Key Basic Research Project of China(973 Program)(2017YFA0303100)the National Natural Science Foundation of China(11888101)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)the support from the start-up grant of IOP-CASsupported by the U.S.Department of Energy,Basic Energy Sciences Grant No.DE-FG02-99ER45747。
文摘We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kagome lattice,we show that the chiral flux phase has the lowest energy among those states which exhibit 2×2 charge orders observed experimentally.This state breaks the time-reversal symmetry and displays anomalous Hall effect.The explicit pattern of the density of state in real space is calculated.These results are supported by recent experiments and suggest that these materials are new platforms to investigate the interplay between topology,superconductivity and electron–electron correlations.